Intelligent control: aspects of fuzzy logic and neural nets
With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1993
|
Schriftenreihe: | World Scientific series in robotics and automated systems
vol. 6 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-organising/learning control is a new emerging discipline that is designed to deal with problems. Rather than being model based, it is experiential based. Intelligent Control is the amalgam of the disciplines of Artificial Intelligence, Systems Theory and Operations Research. It uses most recent experiences or evidence to improve its performance through a variety of learning schemas, that for practical implementation must demonstrate rapid learning convergence, be temporally stable, be robust to parameter changes and internal and external disturbances. It is shown in this book that a wide class of fuzzy logic and neural net based learning algorithms satisfy these conditions. It is demonstrated that this class of intelligent controllers is based upon a fixed nonlinear mapping of the input (sensor) vector, followed by an output layer linear mapping with coefficients that are updated by various first order learning laws. Under these conditions self-organising fuzzy logic controllers and neural net controllers have common learning attributes.A theme example of the navigation and control of an autonomous guided vehicle is included throughout, together with a series of bench examples to demonstrate this new theory and its applicability |
Beschreibung: | xvii, 380 p. ill |
ISBN: | 9789814354738 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044638559 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1993 |||| o||u| ||||||eng d | ||
020 | |a 9789814354738 |c electronic bk. |9 978-981-4354-73-8 | ||
024 | 7 | |a 10.1142/1721 |2 doi | |
035 | |a (ZDB-124-WOP)00005352 | ||
035 | |a (OCoLC)1012621958 | ||
035 | |a (DE-599)BVBBV044638559 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 629.89 |2 22 | |
084 | |a ST 285 |0 (DE-625)143648: |2 rvk | ||
100 | 1 | |a Harris, C. J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Intelligent control |b aspects of fuzzy logic and neural nets |c C.J. Harris, C.G. Moore & M. Brown |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1993 | |
300 | |a xvii, 380 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Scientific series in robotics and automated systems |v vol. 6 | |
520 | |a With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-organising/learning control is a new emerging discipline that is designed to deal with problems. Rather than being model based, it is experiential based. Intelligent Control is the amalgam of the disciplines of Artificial Intelligence, Systems Theory and Operations Research. It uses most recent experiences or evidence to improve its performance through a variety of learning schemas, that for practical implementation must demonstrate rapid learning convergence, be temporally stable, be robust to parameter changes and internal and external disturbances. It is shown in this book that a wide class of fuzzy logic and neural net based learning algorithms satisfy these conditions. It is demonstrated that this class of intelligent controllers is based upon a fixed nonlinear mapping of the input (sensor) vector, followed by an output layer linear mapping with coefficients that are updated by various first order learning laws. Under these conditions self-organising fuzzy logic controllers and neural net controllers have common learning attributes.A theme example of the navigation and control of an autonomous guided vehicle is included throughout, together with a series of bench examples to demonstrate this new theory and its applicability | ||
650 | 4 | |a Intelligent control systems | |
650 | 4 | |a Fuzzy logic | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 0 | 7 | |a Kontrolle |0 (DE-588)4032312-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fuzzy-Logik |0 (DE-588)4341284-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 1 | |a Fuzzy-Logik |0 (DE-588)4341284-1 |D s |
689 | 0 | 2 | |a Kontrolle |0 (DE-588)4032312-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Moore, C. G. |e Sonstige |4 oth | |
700 | 1 | |a Brown, M. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810210426 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/1721#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036533 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/1721#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178055348879360 |
---|---|
any_adam_object | |
author | Harris, C. J. |
author_facet | Harris, C. J. |
author_role | aut |
author_sort | Harris, C. J. |
author_variant | c j h cj cjh |
building | Verbundindex |
bvnumber | BV044638559 |
classification_rvk | ST 285 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005352 (OCoLC)1012621958 (DE-599)BVBBV044638559 |
dewey-full | 629.89 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.89 |
dewey-search | 629.89 |
dewey-sort | 3629.89 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03591nmm a2200529zcb4500</leader><controlfield tag="001">BV044638559</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814354738</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4354-73-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/1721</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005352</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012621958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638559</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.89</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harris, C. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intelligent control</subfield><subfield code="b">aspects of fuzzy logic and neural nets</subfield><subfield code="c">C.J. Harris, C.G. Moore & M. Brown</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 380 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series in robotics and automated systems</subfield><subfield code="v">vol. 6</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-organising/learning control is a new emerging discipline that is designed to deal with problems. Rather than being model based, it is experiential based. Intelligent Control is the amalgam of the disciplines of Artificial Intelligence, Systems Theory and Operations Research. It uses most recent experiences or evidence to improve its performance through a variety of learning schemas, that for practical implementation must demonstrate rapid learning convergence, be temporally stable, be robust to parameter changes and internal and external disturbances. It is shown in this book that a wide class of fuzzy logic and neural net based learning algorithms satisfy these conditions. It is demonstrated that this class of intelligent controllers is based upon a fixed nonlinear mapping of the input (sensor) vector, followed by an output layer linear mapping with coefficients that are updated by various first order learning laws. Under these conditions self-organising fuzzy logic controllers and neural net controllers have common learning attributes.A theme example of the navigation and control of an autonomous guided vehicle is included throughout, together with a series of bench examples to demonstrate this new theory and its applicability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent control systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolle</subfield><subfield code="0">(DE-588)4032312-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fuzzy-Logik</subfield><subfield code="0">(DE-588)4341284-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fuzzy-Logik</subfield><subfield code="0">(DE-588)4341284-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontrolle</subfield><subfield code="0">(DE-588)4032312-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moore, C. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brown, M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810210426</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/1721#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036533</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/1721#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638559 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:53Z |
institution | BVB |
isbn | 9789814354738 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036533 |
oclc_num | 1012621958 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xvii, 380 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | World Scientific series in robotics and automated systems |
spelling | Harris, C. J. Verfasser aut Intelligent control aspects of fuzzy logic and neural nets C.J. Harris, C.G. Moore & M. Brown Singapore World Scientific Pub. Co. c1993 xvii, 380 p. ill txt rdacontent c rdamedia cr rdacarrier World Scientific series in robotics and automated systems vol. 6 With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-organising/learning control is a new emerging discipline that is designed to deal with problems. Rather than being model based, it is experiential based. Intelligent Control is the amalgam of the disciplines of Artificial Intelligence, Systems Theory and Operations Research. It uses most recent experiences or evidence to improve its performance through a variety of learning schemas, that for practical implementation must demonstrate rapid learning convergence, be temporally stable, be robust to parameter changes and internal and external disturbances. It is shown in this book that a wide class of fuzzy logic and neural net based learning algorithms satisfy these conditions. It is demonstrated that this class of intelligent controllers is based upon a fixed nonlinear mapping of the input (sensor) vector, followed by an output layer linear mapping with coefficients that are updated by various first order learning laws. Under these conditions self-organising fuzzy logic controllers and neural net controllers have common learning attributes.A theme example of the navigation and control of an autonomous guided vehicle is included throughout, together with a series of bench examples to demonstrate this new theory and its applicability Intelligent control systems Fuzzy logic Neural networks (Computer science) Kontrolle (DE-588)4032312-2 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Fuzzy-Logik (DE-588)4341284-1 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 s Fuzzy-Logik (DE-588)4341284-1 s Kontrolle (DE-588)4032312-2 s 1\p DE-604 Moore, C. G. Sonstige oth Brown, M. Sonstige oth Erscheint auch als Druck-Ausgabe 9810210426 http://www.worldscientific.com/worldscibooks/10.1142/1721#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Harris, C. J. Intelligent control aspects of fuzzy logic and neural nets Intelligent control systems Fuzzy logic Neural networks (Computer science) Kontrolle (DE-588)4032312-2 gnd Neuronales Netz (DE-588)4226127-2 gnd Fuzzy-Logik (DE-588)4341284-1 gnd |
subject_GND | (DE-588)4032312-2 (DE-588)4226127-2 (DE-588)4341284-1 |
title | Intelligent control aspects of fuzzy logic and neural nets |
title_auth | Intelligent control aspects of fuzzy logic and neural nets |
title_exact_search | Intelligent control aspects of fuzzy logic and neural nets |
title_full | Intelligent control aspects of fuzzy logic and neural nets C.J. Harris, C.G. Moore & M. Brown |
title_fullStr | Intelligent control aspects of fuzzy logic and neural nets C.J. Harris, C.G. Moore & M. Brown |
title_full_unstemmed | Intelligent control aspects of fuzzy logic and neural nets C.J. Harris, C.G. Moore & M. Brown |
title_short | Intelligent control |
title_sort | intelligent control aspects of fuzzy logic and neural nets |
title_sub | aspects of fuzzy logic and neural nets |
topic | Intelligent control systems Fuzzy logic Neural networks (Computer science) Kontrolle (DE-588)4032312-2 gnd Neuronales Netz (DE-588)4226127-2 gnd Fuzzy-Logik (DE-588)4341284-1 gnd |
topic_facet | Intelligent control systems Fuzzy logic Neural networks (Computer science) Kontrolle Neuronales Netz Fuzzy-Logik |
url | http://www.worldscientific.com/worldscibooks/10.1142/1721#t=toc |
work_keys_str_mv | AT harriscj intelligentcontrolaspectsoffuzzylogicandneuralnets AT moorecg intelligentcontrolaspectsoffuzzylogicandneuralnets AT brownm intelligentcontrolaspectsoffuzzylogicandneuralnets |