Applications of unitary symmetry and combinatorics:
This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A un...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2011
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved. The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes |
Beschreibung: | xxxv, 344 p |
ISBN: | 9789814350723 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638479 | ||
003 | DE-604 | ||
005 | 20210607 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814350723 |c electronic bk. |9 978-981-4350-72-3 | ||
024 | 7 | |a 10.1142/8161 |2 doi | |
035 | |a (ZDB-124-WOP)00001378 | ||
035 | |a (OCoLC)1012624620 | ||
035 | |a (DE-599)BVBBV044638479 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.13 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UK 3000 |0 (DE-625)145799: |2 rvk | ||
100 | 1 | |a Louck, James D. |d 1928- |e Verfasser |0 (DE-588)141071044 |4 aut | |
245 | 1 | 0 | |a Applications of unitary symmetry and combinatorics |c James D. Louck |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2011 | |
300 | |a xxxv, 344 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved. The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes | ||
650 | 4 | |a Combinatorial analysis | |
650 | 4 | |a Eightfold way (Nuclear physics) | |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unitäre Symmetrie |0 (DE-588)4627368-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unitäre Symmetrie |0 (DE-588)4627368-2 |D s |
689 | 0 | 1 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814350716 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9814350710 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8161#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036452 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8161#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178055195787264 |
---|---|
any_adam_object | |
author | Louck, James D. 1928- |
author_GND | (DE-588)141071044 |
author_facet | Louck, James D. 1928- |
author_role | aut |
author_sort | Louck, James D. 1928- |
author_variant | j d l jd jdl |
building | Verbundindex |
bvnumber | BV044638479 |
classification_rvk | SK 950 UK 3000 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001378 (OCoLC)1012624620 (DE-599)BVBBV044638479 |
dewey-full | 516.13 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.13 |
dewey-search | 516.13 |
dewey-sort | 3516.13 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03183nmm a2200481zc 4500</leader><controlfield tag="001">BV044638479</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210607 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814350723</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4350-72-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8161</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001378</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012624620</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638479</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.13</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 3000</subfield><subfield code="0">(DE-625)145799:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Louck, James D.</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141071044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of unitary symmetry and combinatorics</subfield><subfield code="c">James D. Louck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxv, 344 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved. The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eightfold way (Nuclear physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unitäre Symmetrie</subfield><subfield code="0">(DE-588)4627368-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unitäre Symmetrie</subfield><subfield code="0">(DE-588)4627368-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814350716</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9814350710</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8161#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036452</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8161#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638479 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:53Z |
institution | BVB |
isbn | 9789814350723 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036452 |
oclc_num | 1012624620 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xxxv, 344 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Louck, James D. 1928- Verfasser (DE-588)141071044 aut Applications of unitary symmetry and combinatorics James D. Louck Singapore World Scientific Pub. Co. c2011 xxxv, 344 p txt rdacontent c rdamedia cr rdacarrier This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved. The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes Combinatorial analysis Eightfold way (Nuclear physics) Kombinatorik (DE-588)4031824-2 gnd rswk-swf Unitäre Symmetrie (DE-588)4627368-2 gnd rswk-swf Unitäre Symmetrie (DE-588)4627368-2 s Kombinatorik (DE-588)4031824-2 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789814350716 Erscheint auch als Druck-Ausgabe 9814350710 http://www.worldscientific.com/worldscibooks/10.1142/8161#t=toc Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Louck, James D. 1928- Applications of unitary symmetry and combinatorics Combinatorial analysis Eightfold way (Nuclear physics) Kombinatorik (DE-588)4031824-2 gnd Unitäre Symmetrie (DE-588)4627368-2 gnd |
subject_GND | (DE-588)4031824-2 (DE-588)4627368-2 |
title | Applications of unitary symmetry and combinatorics |
title_auth | Applications of unitary symmetry and combinatorics |
title_exact_search | Applications of unitary symmetry and combinatorics |
title_full | Applications of unitary symmetry and combinatorics James D. Louck |
title_fullStr | Applications of unitary symmetry and combinatorics James D. Louck |
title_full_unstemmed | Applications of unitary symmetry and combinatorics James D. Louck |
title_short | Applications of unitary symmetry and combinatorics |
title_sort | applications of unitary symmetry and combinatorics |
topic | Combinatorial analysis Eightfold way (Nuclear physics) Kombinatorik (DE-588)4031824-2 gnd Unitäre Symmetrie (DE-588)4627368-2 gnd |
topic_facet | Combinatorial analysis Eightfold way (Nuclear physics) Kombinatorik Unitäre Symmetrie |
url | http://www.worldscientific.com/worldscibooks/10.1142/8161#t=toc |
work_keys_str_mv | AT louckjamesd applicationsofunitarysymmetryandcombinatorics |