Geometry of time-spaces: non-commutative algebraic geometry, applied to quantum theory
This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory of phase spaces, and its canonical Dirac deriv...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2011
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory of phase spaces, and its canonical Dirac derivation. The book starts with a new definition of time, relative to which the set of mathematical velocities form a compact set, implying special and general relativity. With this model in mind, a general Quantum Theory is developed and shown to fit with the classical theory. In particular the "toy"-model used as example, contains, as part of the structure, the classical gauge groups u(1), su(2) and su(3), and therefore also the theory of spin and quarks, etc |
Beschreibung: | x, 143 p |
ISBN: | 9789814343350 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638423 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814343350 |c electronic bk. |9 978-981-4343-35-0 | ||
024 | 7 | |a 10.1142/8106 |2 doi | |
035 | |a (ZDB-124-WOP)00001343 | ||
035 | |a (OCoLC)839023306 | ||
035 | |a (DE-599)BVBBV044638423 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.15635 |2 22 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Laudal, Olav Arnfinn |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of time-spaces |b non-commutative algebraic geometry, applied to quantum theory |c Olav Arnfinn Laudal |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2011 | |
300 | |a x, 143 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory of phase spaces, and its canonical Dirac derivation. The book starts with a new definition of time, relative to which the set of mathematical velocities form a compact set, implying special and general relativity. With this model in mind, a general Quantum Theory is developed and shown to fit with the classical theory. In particular the "toy"-model used as example, contains, as part of the structure, the classical gauge groups u(1), su(2) and su(3), and therefore also the theory of spin and quarks, etc | ||
650 | 4 | |a Geometry, Algebraic | |
650 | 4 | |a Noncommutative differential geometry | |
650 | 4 | |a Quantum theory | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814343343 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 981434334X |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8106#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036397 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8106#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178055083589632 |
---|---|
any_adam_object | |
author | Laudal, Olav Arnfinn |
author_facet | Laudal, Olav Arnfinn |
author_role | aut |
author_sort | Laudal, Olav Arnfinn |
author_variant | o a l oa oal |
building | Verbundindex |
bvnumber | BV044638423 |
classification_rvk | SK 380 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001343 (OCoLC)839023306 (DE-599)BVBBV044638423 |
dewey-full | 530.15635 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15635 |
dewey-search | 530.15635 |
dewey-sort | 3530.15635 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02261nmm a2200409zc 4500</leader><controlfield tag="001">BV044638423</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814343350</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4343-35-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8106</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001343 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839023306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638423</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15635</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Laudal, Olav Arnfinn</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of time-spaces</subfield><subfield code="b">non-commutative algebraic geometry, applied to quantum theory</subfield><subfield code="c">Olav Arnfinn Laudal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 143 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory of phase spaces, and its canonical Dirac derivation. The book starts with a new definition of time, relative to which the set of mathematical velocities form a compact set, implying special and general relativity. With this model in mind, a general Quantum Theory is developed and shown to fit with the classical theory. In particular the "toy"-model used as example, contains, as part of the structure, the classical gauge groups u(1), su(2) and su(3), and therefore also the theory of spin and quarks, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noncommutative differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814343343</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">981434334X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8106#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036397</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8106#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638423 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:53Z |
institution | BVB |
isbn | 9789814343350 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036397 |
oclc_num | 839023306 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 143 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Laudal, Olav Arnfinn Verfasser aut Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory Olav Arnfinn Laudal Singapore World Scientific Pub. Co. c2011 x, 143 p txt rdacontent c rdamedia cr rdacarrier This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory of phase spaces, and its canonical Dirac derivation. The book starts with a new definition of time, relative to which the set of mathematical velocities form a compact set, implying special and general relativity. With this model in mind, a general Quantum Theory is developed and shown to fit with the classical theory. In particular the "toy"-model used as example, contains, as part of the structure, the classical gauge groups u(1), su(2) and su(3), and therefore also the theory of spin and quarks, etc Geometry, Algebraic Noncommutative differential geometry Quantum theory Erscheint auch als Druck-Ausgabe 9789814343343 Erscheint auch als Druck-Ausgabe 981434334X http://www.worldscientific.com/worldscibooks/10.1142/8106#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Laudal, Olav Arnfinn Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory Geometry, Algebraic Noncommutative differential geometry Quantum theory |
title | Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory |
title_auth | Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory |
title_exact_search | Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory |
title_full | Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory Olav Arnfinn Laudal |
title_fullStr | Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory Olav Arnfinn Laudal |
title_full_unstemmed | Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory Olav Arnfinn Laudal |
title_short | Geometry of time-spaces |
title_sort | geometry of time spaces non commutative algebraic geometry applied to quantum theory |
title_sub | non-commutative algebraic geometry, applied to quantum theory |
topic | Geometry, Algebraic Noncommutative differential geometry Quantum theory |
topic_facet | Geometry, Algebraic Noncommutative differential geometry Quantum theory |
url | http://www.worldscientific.com/worldscibooks/10.1142/8106#t=toc |
work_keys_str_mv | AT laudalolavarnfinn geometryoftimespacesnoncommutativealgebraicgeometryappliedtoquantumtheory |