Qualitative and asymptotic analysis of differential equations with random perturbations:
Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematica...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2011
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines : random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed |
Beschreibung: | ix, 312 p |
ISBN: | 9789814329071 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638297 | ||
003 | DE-604 | ||
005 | 20201205 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814329071 |c electronic bk. |9 978-981-4329-07-1 | ||
024 | 7 | |a 10.1142/8016 |2 doi | |
035 | |a (ZDB-124-WOP)00001403 | ||
035 | |a (OCoLC)1012690434 | ||
035 | |a (DE-599)BVBBV044638297 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.35 |2 22 | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
100 | 1 | |a Samojlenko, Anatolij M. |d 1938-2020 |e Verfasser |0 (DE-588)108416569 |4 aut | |
245 | 1 | 0 | |a Qualitative and asymptotic analysis of differential equations with random perturbations |c Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2011 | |
300 | |a ix, 312 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines : random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed | ||
650 | 4 | |a Differential equations / Asymptotic theory | |
650 | 4 | |a Mathematical analysis | |
650 | 0 | 7 | |a Störungstheorie |0 (DE-588)4128420-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a Störungstheorie |0 (DE-588)4128420-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Stanzhytskyi, Oleksandr |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814329064 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9814329061 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8016#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036271 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8016#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178054832979968 |
---|---|
any_adam_object | |
author | Samojlenko, Anatolij M. 1938-2020 |
author_GND | (DE-588)108416569 |
author_facet | Samojlenko, Anatolij M. 1938-2020 |
author_role | aut |
author_sort | Samojlenko, Anatolij M. 1938-2020 |
author_variant | a m s am ams |
building | Verbundindex |
bvnumber | BV044638297 |
classification_rvk | SK 520 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001403 (OCoLC)1012690434 (DE-599)BVBBV044638297 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02745nmm a2200481zc 4500</leader><controlfield tag="001">BV044638297</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814329071</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4329-07-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012690434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638297</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Samojlenko, Anatolij M.</subfield><subfield code="d">1938-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108416569</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Qualitative and asymptotic analysis of differential equations with random perturbations</subfield><subfield code="c">Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 312 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines : random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations / Asymptotic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stanzhytskyi, Oleksandr</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814329064</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9814329061</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8016#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036271</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8016#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638297 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:53Z |
institution | BVB |
isbn | 9789814329071 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036271 |
oclc_num | 1012690434 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | ix, 312 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Samojlenko, Anatolij M. 1938-2020 Verfasser (DE-588)108416569 aut Qualitative and asymptotic analysis of differential equations with random perturbations Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi Singapore World Scientific Pub. Co. c2011 ix, 312 p txt rdacontent c rdamedia cr rdacarrier Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines : random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed Differential equations / Asymptotic theory Mathematical analysis Störungstheorie (DE-588)4128420-3 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 s Störungstheorie (DE-588)4128420-3 s 1\p DE-604 Stanzhytskyi, Oleksandr Sonstige oth Erscheint auch als Druck-Ausgabe 9789814329064 Erscheint auch als Druck-Ausgabe 9814329061 http://www.worldscientific.com/worldscibooks/10.1142/8016#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Samojlenko, Anatolij M. 1938-2020 Qualitative and asymptotic analysis of differential equations with random perturbations Differential equations / Asymptotic theory Mathematical analysis Störungstheorie (DE-588)4128420-3 gnd Differentialgleichung (DE-588)4012249-9 gnd |
subject_GND | (DE-588)4128420-3 (DE-588)4012249-9 |
title | Qualitative and asymptotic analysis of differential equations with random perturbations |
title_auth | Qualitative and asymptotic analysis of differential equations with random perturbations |
title_exact_search | Qualitative and asymptotic analysis of differential equations with random perturbations |
title_full | Qualitative and asymptotic analysis of differential equations with random perturbations Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi |
title_fullStr | Qualitative and asymptotic analysis of differential equations with random perturbations Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi |
title_full_unstemmed | Qualitative and asymptotic analysis of differential equations with random perturbations Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi |
title_short | Qualitative and asymptotic analysis of differential equations with random perturbations |
title_sort | qualitative and asymptotic analysis of differential equations with random perturbations |
topic | Differential equations / Asymptotic theory Mathematical analysis Störungstheorie (DE-588)4128420-3 gnd Differentialgleichung (DE-588)4012249-9 gnd |
topic_facet | Differential equations / Asymptotic theory Mathematical analysis Störungstheorie Differentialgleichung |
url | http://www.worldscientific.com/worldscibooks/10.1142/8016#t=toc |
work_keys_str_mv | AT samojlenkoanatolijm qualitativeandasymptoticanalysisofdifferentialequationswithrandomperturbations AT stanzhytskyioleksandr qualitativeandasymptoticanalysisofdifferentialequationswithrandomperturbations |