Henstock-Kurzweil integration on Euclidean spaces:
The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2011
|
Schriftenreihe: | Series in real analysis
v. 12 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus |
Beschreibung: | ix, 314 p |
ISBN: | 9789814324595 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044638247 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814324595 |c electronic bk. |9 978-981-4324-59-5 | ||
024 | 7 | |a 10.1142/7933 |2 doi | |
035 | |a (ZDB-124-WOP)00001326 | ||
035 | |a (OCoLC)839020955 | ||
035 | |a (DE-599)BVBBV044638247 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.43 |2 22 | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Lee, Tuo Yeong |d 1967- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Henstock-Kurzweil integration on Euclidean spaces |c Lee Tuo Yeong |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2011 | |
300 | |a ix, 314 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in real analysis |v v. 12 | |
520 | |a The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus | ||
650 | 4 | |a Henstock-Kurzweil integral | |
650 | 4 | |a Lebesgue integral | |
650 | 4 | |a Calculus, Integral | |
650 | 0 | 7 | |a Henstock-Integration |0 (DE-588)4159545-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lebesgue-Integral |0 (DE-588)4034949-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsches Integral |0 (DE-588)4049996-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsches Integral |0 (DE-588)4049996-0 |D s |
689 | 0 | 1 | |a Lebesgue-Integral |0 (DE-588)4034949-4 |D s |
689 | 0 | 2 | |a Henstock-Integration |0 (DE-588)4159545-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814324588 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9814324582 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/7933#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036221 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/7933#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178054699810816 |
---|---|
any_adam_object | |
author | Lee, Tuo Yeong 1967- |
author_facet | Lee, Tuo Yeong 1967- |
author_role | aut |
author_sort | Lee, Tuo Yeong 1967- |
author_variant | t y l ty tyl |
building | Verbundindex |
bvnumber | BV044638247 |
classification_rvk | SK 430 SK 620 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001326 (OCoLC)839020955 (DE-599)BVBBV044638247 |
dewey-full | 515.43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.43 |
dewey-search | 515.43 |
dewey-sort | 3515.43 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02677nmm a2200529zcb4500</leader><controlfield tag="001">BV044638247</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814324595</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4324-59-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/7933</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001326 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839020955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638247</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.43</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Tuo Yeong</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Henstock-Kurzweil integration on Euclidean spaces</subfield><subfield code="c">Lee Tuo Yeong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 314 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in real analysis</subfield><subfield code="v">v. 12</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Henstock-Kurzweil integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lebesgue integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus, Integral</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Henstock-Integration</subfield><subfield code="0">(DE-588)4159545-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lebesgue-Integral</subfield><subfield code="0">(DE-588)4034949-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lebesgue-Integral</subfield><subfield code="0">(DE-588)4034949-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Henstock-Integration</subfield><subfield code="0">(DE-588)4159545-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814324588</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9814324582</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7933#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036221</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7933#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638247 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:52Z |
institution | BVB |
isbn | 9789814324595 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036221 |
oclc_num | 839020955 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | ix, 314 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series in real analysis |
spelling | Lee, Tuo Yeong 1967- Verfasser aut Henstock-Kurzweil integration on Euclidean spaces Lee Tuo Yeong Singapore World Scientific Pub. Co. c2011 ix, 314 p txt rdacontent c rdamedia cr rdacarrier Series in real analysis v. 12 The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus Henstock-Kurzweil integral Lebesgue integral Calculus, Integral Henstock-Integration (DE-588)4159545-2 gnd rswk-swf Lebesgue-Integral (DE-588)4034949-4 gnd rswk-swf Riemannsches Integral (DE-588)4049996-0 gnd rswk-swf Riemannsches Integral (DE-588)4049996-0 s Lebesgue-Integral (DE-588)4034949-4 s Henstock-Integration (DE-588)4159545-2 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789814324588 Erscheint auch als Druck-Ausgabe 9814324582 http://www.worldscientific.com/worldscibooks/10.1142/7933#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lee, Tuo Yeong 1967- Henstock-Kurzweil integration on Euclidean spaces Henstock-Kurzweil integral Lebesgue integral Calculus, Integral Henstock-Integration (DE-588)4159545-2 gnd Lebesgue-Integral (DE-588)4034949-4 gnd Riemannsches Integral (DE-588)4049996-0 gnd |
subject_GND | (DE-588)4159545-2 (DE-588)4034949-4 (DE-588)4049996-0 |
title | Henstock-Kurzweil integration on Euclidean spaces |
title_auth | Henstock-Kurzweil integration on Euclidean spaces |
title_exact_search | Henstock-Kurzweil integration on Euclidean spaces |
title_full | Henstock-Kurzweil integration on Euclidean spaces Lee Tuo Yeong |
title_fullStr | Henstock-Kurzweil integration on Euclidean spaces Lee Tuo Yeong |
title_full_unstemmed | Henstock-Kurzweil integration on Euclidean spaces Lee Tuo Yeong |
title_short | Henstock-Kurzweil integration on Euclidean spaces |
title_sort | henstock kurzweil integration on euclidean spaces |
topic | Henstock-Kurzweil integral Lebesgue integral Calculus, Integral Henstock-Integration (DE-588)4159545-2 gnd Lebesgue-Integral (DE-588)4034949-4 gnd Riemannsches Integral (DE-588)4049996-0 gnd |
topic_facet | Henstock-Kurzweil integral Lebesgue integral Calculus, Integral Henstock-Integration Lebesgue-Integral Riemannsches Integral |
url | http://www.worldscientific.com/worldscibooks/10.1142/7933#t=toc |
work_keys_str_mv | AT leetuoyeong henstockkurzweilintegrationoneuclideanspaces |