Random sequential packing of cubes:
In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-d...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2011
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-dimensional packing density, distribution of the minimum of gaps, etc., the classical analysis has to be studied. The packing density of the general multi-dimensional random sequential packing of cubes (hypercubes) makes a well-known unsolved problem. The experimental analysis is usually applied to the problem. This book introduces simplified multi-dimensional models of cubes and torus, which keep the character of the original general model, and introduces a combinatorial analysis for combinatorial modelings |
Beschreibung: | xiii, 240 p. ill |
ISBN: | 9789814307840 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638104 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814307840 |c electronic bk. |9 978-981-4307-84-0 | ||
024 | 7 | |a 10.1142/7777 |2 doi | |
035 | |a (ZDB-124-WOP)00001258 | ||
035 | |a (OCoLC)1012717648 | ||
035 | |a (DE-599)BVBBV044638104 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 511.6 |2 22 | |
100 | 1 | |a Dutour Sikiric, Mathieu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Random sequential packing of cubes |c Mathieu Dutour Sikiric, Yoshiaki Itoh |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2011 | |
300 | |a xiii, 240 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-dimensional packing density, distribution of the minimum of gaps, etc., the classical analysis has to be studied. The packing density of the general multi-dimensional random sequential packing of cubes (hypercubes) makes a well-known unsolved problem. The experimental analysis is usually applied to the problem. This book introduces simplified multi-dimensional models of cubes and torus, which keep the character of the original general model, and introduces a combinatorial analysis for combinatorial modelings | ||
650 | 4 | |a Combinatorial packing and covering | |
650 | 4 | |a Sphere packings | |
650 | 0 | 7 | |a Würfel |0 (DE-588)4079396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Packungsproblem |0 (DE-588)4173057-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Würfel |0 (DE-588)4079396-5 |D s |
689 | 0 | 1 | |a Packungsproblem |0 (DE-588)4173057-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Itoh, Yoshiaki |d 1943- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814307833 (hbk.) |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9814307831 (hbk.) |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/7777#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036077 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/7777#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178054387335168 |
---|---|
any_adam_object | |
author | Dutour Sikiric, Mathieu |
author_facet | Dutour Sikiric, Mathieu |
author_role | aut |
author_sort | Dutour Sikiric, Mathieu |
author_variant | s m d sm smd |
building | Verbundindex |
bvnumber | BV044638104 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001258 (OCoLC)1012717648 (DE-599)BVBBV044638104 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02610nmm a2200469zc 4500</leader><controlfield tag="001">BV044638104</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814307840</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4307-84-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/7777</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001258 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012717648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638104</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dutour Sikiric, Mathieu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random sequential packing of cubes</subfield><subfield code="c">Mathieu Dutour Sikiric, Yoshiaki Itoh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 240 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-dimensional packing density, distribution of the minimum of gaps, etc., the classical analysis has to be studied. The packing density of the general multi-dimensional random sequential packing of cubes (hypercubes) makes a well-known unsolved problem. The experimental analysis is usually applied to the problem. This book introduces simplified multi-dimensional models of cubes and torus, which keep the character of the original general model, and introduces a combinatorial analysis for combinatorial modelings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial packing and covering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sphere packings</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Würfel</subfield><subfield code="0">(DE-588)4079396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Packungsproblem</subfield><subfield code="0">(DE-588)4173057-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Würfel</subfield><subfield code="0">(DE-588)4079396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Packungsproblem</subfield><subfield code="0">(DE-588)4173057-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Itoh, Yoshiaki</subfield><subfield code="d">1943-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814307833 (hbk.)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9814307831 (hbk.)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7777#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036077</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7777#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638104 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:52Z |
institution | BVB |
isbn | 9789814307840 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036077 |
oclc_num | 1012717648 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiii, 240 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Dutour Sikiric, Mathieu Verfasser aut Random sequential packing of cubes Mathieu Dutour Sikiric, Yoshiaki Itoh Singapore World Scientific Pub. Co. c2011 xiii, 240 p. ill txt rdacontent c rdamedia cr rdacarrier In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-dimensional packing density, distribution of the minimum of gaps, etc., the classical analysis has to be studied. The packing density of the general multi-dimensional random sequential packing of cubes (hypercubes) makes a well-known unsolved problem. The experimental analysis is usually applied to the problem. This book introduces simplified multi-dimensional models of cubes and torus, which keep the character of the original general model, and introduces a combinatorial analysis for combinatorial modelings Combinatorial packing and covering Sphere packings Würfel (DE-588)4079396-5 gnd rswk-swf Packungsproblem (DE-588)4173057-4 gnd rswk-swf Würfel (DE-588)4079396-5 s Packungsproblem (DE-588)4173057-4 s 1\p DE-604 Itoh, Yoshiaki 1943- Sonstige oth Erscheint auch als Druck-Ausgabe 9789814307833 (hbk.) Erscheint auch als Druck-Ausgabe 9814307831 (hbk.) http://www.worldscientific.com/worldscibooks/10.1142/7777#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dutour Sikiric, Mathieu Random sequential packing of cubes Combinatorial packing and covering Sphere packings Würfel (DE-588)4079396-5 gnd Packungsproblem (DE-588)4173057-4 gnd |
subject_GND | (DE-588)4079396-5 (DE-588)4173057-4 |
title | Random sequential packing of cubes |
title_auth | Random sequential packing of cubes |
title_exact_search | Random sequential packing of cubes |
title_full | Random sequential packing of cubes Mathieu Dutour Sikiric, Yoshiaki Itoh |
title_fullStr | Random sequential packing of cubes Mathieu Dutour Sikiric, Yoshiaki Itoh |
title_full_unstemmed | Random sequential packing of cubes Mathieu Dutour Sikiric, Yoshiaki Itoh |
title_short | Random sequential packing of cubes |
title_sort | random sequential packing of cubes |
topic | Combinatorial packing and covering Sphere packings Würfel (DE-588)4079396-5 gnd Packungsproblem (DE-588)4173057-4 gnd |
topic_facet | Combinatorial packing and covering Sphere packings Würfel Packungsproblem |
url | http://www.worldscientific.com/worldscibooks/10.1142/7777#t=toc |
work_keys_str_mv | AT dutoursikiricmathieu randomsequentialpackingofcubes AT itohyoshiaki randomsequentialpackingofcubes |