Minimal submanifolds in pseudo-Riemannian geometry:
Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equatio...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2011
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case. For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Khler manifolds are given |
Beschreibung: | xv, 167 p. ill |
ISBN: | 9789814291255 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044637932 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814291255 |c electronic bk. |9 978-981-4291-25-5 | ||
024 | 7 | |a 10.1142/7542 |2 doi | |
035 | |a (ZDB-124-WOP)00001217 | ||
035 | |a (OCoLC)1012630540 | ||
035 | |a (DE-599)BVBBV044637932 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.373 |2 22 | |
100 | 1 | |a Anciaux, Henri |e Verfasser |4 aut | |
245 | 1 | 0 | |a Minimal submanifolds in pseudo-Riemannian geometry |c Henri Anciaux |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2011 | |
300 | |a xv, 167 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case. For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Khler manifolds are given | ||
650 | 4 | |a Riemannian manifolds | |
650 | 4 | |a Minimal submanifolds | |
650 | 0 | 7 | |a Minimale Untermannigfaltigkeit |0 (DE-588)4338425-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudo-Riemannscher Raum |0 (DE-588)4176163-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pseudo-Riemannscher Raum |0 (DE-588)4176163-7 |D s |
689 | 0 | 1 | |a Minimale Untermannigfaltigkeit |0 (DE-588)4338425-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814291248 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9814291242 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/7542#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030035904 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/7542#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178054002507776 |
---|---|
any_adam_object | |
author | Anciaux, Henri |
author_facet | Anciaux, Henri |
author_role | aut |
author_sort | Anciaux, Henri |
author_variant | h a ha |
building | Verbundindex |
bvnumber | BV044637932 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001217 (OCoLC)1012630540 (DE-599)BVBBV044637932 |
dewey-full | 516.373 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.373 |
dewey-search | 516.373 |
dewey-sort | 3516.373 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03089nmm a2200457zc 4500</leader><controlfield tag="001">BV044637932</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814291255</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4291-25-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/7542</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001217 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012630540</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637932</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.373</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anciaux, Henri</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimal submanifolds in pseudo-Riemannian geometry</subfield><subfield code="c">Henri Anciaux</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 167 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case. For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Khler manifolds are given</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal submanifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimale Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4338425-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudo-Riemannscher Raum</subfield><subfield code="0">(DE-588)4176163-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pseudo-Riemannscher Raum</subfield><subfield code="0">(DE-588)4176163-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Minimale Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4338425-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814291248</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9814291242</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7542#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030035904</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7542#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044637932 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:52Z |
institution | BVB |
isbn | 9789814291255 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030035904 |
oclc_num | 1012630540 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xv, 167 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Anciaux, Henri Verfasser aut Minimal submanifolds in pseudo-Riemannian geometry Henri Anciaux Singapore World Scientific Pub. Co. c2011 xv, 167 p. ill txt rdacontent c rdamedia cr rdacarrier Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case. For the first time, this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Khler manifolds are given Riemannian manifolds Minimal submanifolds Minimale Untermannigfaltigkeit (DE-588)4338425-0 gnd rswk-swf Pseudo-Riemannscher Raum (DE-588)4176163-7 gnd rswk-swf Pseudo-Riemannscher Raum (DE-588)4176163-7 s Minimale Untermannigfaltigkeit (DE-588)4338425-0 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789814291248 Erscheint auch als Druck-Ausgabe 9814291242 http://www.worldscientific.com/worldscibooks/10.1142/7542#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Anciaux, Henri Minimal submanifolds in pseudo-Riemannian geometry Riemannian manifolds Minimal submanifolds Minimale Untermannigfaltigkeit (DE-588)4338425-0 gnd Pseudo-Riemannscher Raum (DE-588)4176163-7 gnd |
subject_GND | (DE-588)4338425-0 (DE-588)4176163-7 |
title | Minimal submanifolds in pseudo-Riemannian geometry |
title_auth | Minimal submanifolds in pseudo-Riemannian geometry |
title_exact_search | Minimal submanifolds in pseudo-Riemannian geometry |
title_full | Minimal submanifolds in pseudo-Riemannian geometry Henri Anciaux |
title_fullStr | Minimal submanifolds in pseudo-Riemannian geometry Henri Anciaux |
title_full_unstemmed | Minimal submanifolds in pseudo-Riemannian geometry Henri Anciaux |
title_short | Minimal submanifolds in pseudo-Riemannian geometry |
title_sort | minimal submanifolds in pseudo riemannian geometry |
topic | Riemannian manifolds Minimal submanifolds Minimale Untermannigfaltigkeit (DE-588)4338425-0 gnd Pseudo-Riemannscher Raum (DE-588)4176163-7 gnd |
topic_facet | Riemannian manifolds Minimal submanifolds Minimale Untermannigfaltigkeit Pseudo-Riemannscher Raum |
url | http://www.worldscientific.com/worldscibooks/10.1142/7542#t=toc |
work_keys_str_mv | AT anciauxhenri minimalsubmanifoldsinpseudoriemanniangeometry |