Machine learning approaches to bioinformatics:
This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2010
|
Schriftenreihe: | Science, engineering, and biology informatics
v. 4 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects |
Beschreibung: | xiv, 322 p. ill. (some col.) |
ISBN: | 9789814287319 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044637854 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2010 |||| o||u| ||||||eng d | ||
020 | |a 9789814287319 |c electronic bk. |9 978-981-4287-31-9 | ||
024 | 7 | |a 10.1142/7454 |2 doi | |
035 | |a (ZDB-124-WOP)00001016 | ||
035 | |a (OCoLC)838375658 | ||
035 | |a (DE-599)BVBBV044637854 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 572.80285 |2 22 | |
084 | |a WC 7700 |0 (DE-625)148144: |2 rvk | ||
100 | 1 | |a Yang, Zheng Rong |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine learning approaches to bioinformatics |c Zheng Rong Yang |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2010 | |
300 | |a xiv, 322 p. |b ill. (some col.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Science, engineering, and biology informatics |v v. 4 | |
520 | |a This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects | ||
650 | 4 | |a Bioinformatics | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Bioinformatics / Case studies | |
650 | 4 | |a Machine learning / Case studies | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bioinformatik |0 (DE-588)4611085-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4522595-3 |a Fallstudiensammlung |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Bioinformatik |0 (DE-588)4611085-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814287302 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 981428730X |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/7454#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030035827 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/7454#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178053839978496 |
---|---|
any_adam_object | |
author | Yang, Zheng Rong |
author_facet | Yang, Zheng Rong |
author_role | aut |
author_sort | Yang, Zheng Rong |
author_variant | z r y zr zry |
building | Verbundindex |
bvnumber | BV044637854 |
classification_rvk | WC 7700 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001016 (OCoLC)838375658 (DE-599)BVBBV044637854 |
dewey-full | 572.80285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.80285 |
dewey-search | 572.80285 |
dewey-sort | 3572.80285 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03279nmm a2200529zcb4500</leader><controlfield tag="001">BV044637854</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814287319</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4287-31-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/7454</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001016 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)838375658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637854</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.80285</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7700</subfield><subfield code="0">(DE-625)148144:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Zheng Rong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning approaches to bioinformatics</subfield><subfield code="c">Zheng Rong Yang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 322 p.</subfield><subfield code="b">ill. (some col.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Science, engineering, and biology informatics</subfield><subfield code="v">v. 4</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bioinformatics / Case studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning / Case studies</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4522595-3</subfield><subfield code="a">Fallstudiensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814287302</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">981428730X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7454#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030035827</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7454#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4522595-3 Fallstudiensammlung gnd-content |
genre_facet | Fallstudiensammlung |
id | DE-604.BV044637854 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:57:52Z |
institution | BVB |
isbn | 9789814287319 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030035827 |
oclc_num | 838375658 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 322 p. ill. (some col.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Science, engineering, and biology informatics |
spelling | Yang, Zheng Rong Verfasser aut Machine learning approaches to bioinformatics Zheng Rong Yang Singapore World Scientific Pub. Co. c2010 xiv, 322 p. ill. (some col.) txt rdacontent c rdamedia cr rdacarrier Science, engineering, and biology informatics v. 4 This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects Bioinformatics Machine learning Bioinformatics / Case studies Machine learning / Case studies Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Bioinformatik (DE-588)4611085-9 gnd rswk-swf 1\p (DE-588)4522595-3 Fallstudiensammlung gnd-content Maschinelles Lernen (DE-588)4193754-5 s Bioinformatik (DE-588)4611085-9 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9789814287302 Erscheint auch als Druck-Ausgabe 981428730X http://www.worldscientific.com/worldscibooks/10.1142/7454#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Yang, Zheng Rong Machine learning approaches to bioinformatics Bioinformatics Machine learning Bioinformatics / Case studies Machine learning / Case studies Maschinelles Lernen (DE-588)4193754-5 gnd Bioinformatik (DE-588)4611085-9 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4611085-9 (DE-588)4522595-3 |
title | Machine learning approaches to bioinformatics |
title_auth | Machine learning approaches to bioinformatics |
title_exact_search | Machine learning approaches to bioinformatics |
title_full | Machine learning approaches to bioinformatics Zheng Rong Yang |
title_fullStr | Machine learning approaches to bioinformatics Zheng Rong Yang |
title_full_unstemmed | Machine learning approaches to bioinformatics Zheng Rong Yang |
title_short | Machine learning approaches to bioinformatics |
title_sort | machine learning approaches to bioinformatics |
topic | Bioinformatics Machine learning Bioinformatics / Case studies Machine learning / Case studies Maschinelles Lernen (DE-588)4193754-5 gnd Bioinformatik (DE-588)4611085-9 gnd |
topic_facet | Bioinformatics Machine learning Bioinformatics / Case studies Machine learning / Case studies Maschinelles Lernen Bioinformatik Fallstudiensammlung |
url | http://www.worldscientific.com/worldscibooks/10.1142/7454#t=toc |
work_keys_str_mv | AT yangzhengrong machinelearningapproachestobioinformatics |