Dual sets of envelopes and characteristic regions of quasi-polynomials:
Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves asso...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2009
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation. In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and sufficient conditions can be obtained for functions such as polynomials containing more than four parameters. Since the underlying principles are relatively simple, this book is useful to college students who want to see immediate applications of what they learn in Calculus; to graduate students who want to do research in functional equations; and to researchers who want references on roots of quasi-polynomials encountered in the theory of difference and differential equations |
Beschreibung: | viii, 227 p. ill |
ISBN: | 9789814277280 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044637754 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2009 |||| o||u| ||||||eng d | ||
020 | |a 9789814277280 |c electronic bk. |9 978-981-4277-28-0 | ||
024 | 7 | |a 10.1142/7338 |2 doi | |
035 | |a (ZDB-124-WOP)00000491 | ||
035 | |a (OCoLC)1012630782 | ||
035 | |a (DE-599)BVBBV044637754 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.5 |2 22 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Cheng, S. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dual sets of envelopes and characteristic regions of quasi-polynomials |c Sui Sun Cheng, Yi-Zhong Lin |
264 | 1 | |a Singapore |b World Scientific |c c2009 | |
300 | |a viii, 227 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation. In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and sufficient conditions can be obtained for functions such as polynomials containing more than four parameters. Since the underlying principles are relatively simple, this book is useful to college students who want to see immediate applications of what they learn in Calculus; to graduate students who want to do research in functional equations; and to researchers who want references on roots of quasi-polynomials encountered in the theory of difference and differential equations | ||
650 | 4 | |a Functions, Special | |
650 | 4 | |a Polynomials | |
700 | 1 | |a Lin, Yi-Zhong |d 1936- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814277273 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9814277274 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/7338#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030035727 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/7338#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178053597757440 |
---|---|
any_adam_object | |
author | Cheng, S. S. |
author_facet | Cheng, S. S. |
author_role | aut |
author_sort | Cheng, S. S. |
author_variant | s s c ss ssc |
building | Verbundindex |
bvnumber | BV044637754 |
classification_rvk | SK 230 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00000491 (OCoLC)1012630782 (DE-599)BVBBV044637754 |
dewey-full | 515.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.5 |
dewey-search | 515.5 |
dewey-sort | 3515.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02556nmm a2200409zc 4500</leader><controlfield tag="001">BV044637754</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814277280</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4277-28-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/7338</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00000491 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012630782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637754</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, S. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual sets of envelopes and characteristic regions of quasi-polynomials</subfield><subfield code="c">Sui Sun Cheng, Yi-Zhong Lin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 227 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation. In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and sufficient conditions can be obtained for functions such as polynomials containing more than four parameters. Since the underlying principles are relatively simple, this book is useful to college students who want to see immediate applications of what they learn in Calculus; to graduate students who want to do research in functional equations; and to researchers who want references on roots of quasi-polynomials encountered in the theory of difference and differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Special</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Yi-Zhong</subfield><subfield code="d">1936-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814277273</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9814277274</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7338#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030035727</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7338#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044637754 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:51Z |
institution | BVB |
isbn | 9789814277280 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030035727 |
oclc_num | 1012630782 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | viii, 227 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific |
record_format | marc |
spelling | Cheng, S. S. Verfasser aut Dual sets of envelopes and characteristic regions of quasi-polynomials Sui Sun Cheng, Yi-Zhong Lin Singapore World Scientific c2009 viii, 227 p. ill txt rdacontent c rdamedia cr rdacarrier Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation. In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and sufficient conditions can be obtained for functions such as polynomials containing more than four parameters. Since the underlying principles are relatively simple, this book is useful to college students who want to see immediate applications of what they learn in Calculus; to graduate students who want to do research in functional equations; and to researchers who want references on roots of quasi-polynomials encountered in the theory of difference and differential equations Functions, Special Polynomials Lin, Yi-Zhong 1936- Sonstige oth Erscheint auch als Druck-Ausgabe 9789814277273 Erscheint auch als Druck-Ausgabe 9814277274 http://www.worldscientific.com/worldscibooks/10.1142/7338#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Cheng, S. S. Dual sets of envelopes and characteristic regions of quasi-polynomials Functions, Special Polynomials |
title | Dual sets of envelopes and characteristic regions of quasi-polynomials |
title_auth | Dual sets of envelopes and characteristic regions of quasi-polynomials |
title_exact_search | Dual sets of envelopes and characteristic regions of quasi-polynomials |
title_full | Dual sets of envelopes and characteristic regions of quasi-polynomials Sui Sun Cheng, Yi-Zhong Lin |
title_fullStr | Dual sets of envelopes and characteristic regions of quasi-polynomials Sui Sun Cheng, Yi-Zhong Lin |
title_full_unstemmed | Dual sets of envelopes and characteristic regions of quasi-polynomials Sui Sun Cheng, Yi-Zhong Lin |
title_short | Dual sets of envelopes and characteristic regions of quasi-polynomials |
title_sort | dual sets of envelopes and characteristic regions of quasi polynomials |
topic | Functions, Special Polynomials |
topic_facet | Functions, Special Polynomials |
url | http://www.worldscientific.com/worldscibooks/10.1142/7338#t=toc |
work_keys_str_mv | AT chengss dualsetsofenvelopesandcharacteristicregionsofquasipolynomials AT linyizhong dualsetsofenvelopesandcharacteristicregionsofquasipolynomials |