Geometry, dynamics and topology of foliations: a first course
"The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physica...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co. Pte Ltd.
c2017
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | "The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments. In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations."--Publisher's website |
Beschreibung: | Title from PDF file title page (viewed March 16, 2017) |
Beschreibung: | 1 online resource (194 p.) ill |
ISBN: | 9789813207080 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044637491 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2017 |||| o||u| ||||||eng d | ||
020 | |a 9789813207080 |c ebook |9 978-981-3207-08-0 | ||
024 | 7 | |a 10.1142/10366 |2 doi | |
035 | |a (ZDB-124-WOP)00010366 | ||
035 | |a (OCoLC)1012665024 | ||
035 | |a (DE-599)BVBBV044637491 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 514.72 |2 23 | |
100 | 1 | |a Scardua, Bruno |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry, dynamics and topology of foliations |b a first course |c Bruno Scardua, Carlos Arnoldo Morales Rojas |
264 | 1 | |a Singapore |b World Scientific Publishing Co. Pte Ltd. |c c2017 | |
300 | |a 1 online resource (194 p.) |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from PDF file title page (viewed March 16, 2017) | ||
520 | |a "The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments. In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations."--Publisher's website | ||
650 | 4 | |a Foliations (Mathematics) | |
650 | 4 | |a Differential topology | |
650 | 4 | |a Electronic books | |
650 | 0 | 7 | |a Blätterung |0 (DE-588)4007006-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialtopologie |0 (DE-588)4012255-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialtopologie |0 (DE-588)4012255-4 |D s |
689 | 0 | 1 | |a Blätterung |0 (DE-588)4007006-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Rojas, Carlos Arnoldo Morales |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/10366#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030035463 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/10366#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178053057740800 |
---|---|
any_adam_object | |
author | Scardua, Bruno |
author_facet | Scardua, Bruno |
author_role | aut |
author_sort | Scardua, Bruno |
author_variant | b s bs |
building | Verbundindex |
bvnumber | BV044637491 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00010366 (OCoLC)1012665024 (DE-599)BVBBV044637491 |
dewey-full | 514.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.72 |
dewey-search | 514.72 |
dewey-sort | 3514.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02857nmm a2200469zc 4500</leader><controlfield tag="001">BV044637491</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813207080</subfield><subfield code="c">ebook</subfield><subfield code="9">978-981-3207-08-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10366</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00010366</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012665024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637491</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.72</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scardua, Bruno</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry, dynamics and topology of foliations</subfield><subfield code="b">a first course</subfield><subfield code="c">Bruno Scardua, Carlos Arnoldo Morales Rojas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co. Pte Ltd.</subfield><subfield code="c">c2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (194 p.)</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF file title page (viewed March 16, 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments. In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations."--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foliations (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Blätterung</subfield><subfield code="0">(DE-588)4007006-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialtopologie</subfield><subfield code="0">(DE-588)4012255-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialtopologie</subfield><subfield code="0">(DE-588)4012255-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Blätterung</subfield><subfield code="0">(DE-588)4007006-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rojas, Carlos Arnoldo Morales</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10366#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030035463</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10366#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044637491 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:51Z |
institution | BVB |
isbn | 9789813207080 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030035463 |
oclc_num | 1012665024 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 1 online resource (194 p.) ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific Publishing Co. Pte Ltd. |
record_format | marc |
spelling | Scardua, Bruno Verfasser aut Geometry, dynamics and topology of foliations a first course Bruno Scardua, Carlos Arnoldo Morales Rojas Singapore World Scientific Publishing Co. Pte Ltd. c2017 1 online resource (194 p.) ill txt rdacontent c rdamedia cr rdacarrier Title from PDF file title page (viewed March 16, 2017) "The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments. In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations."--Publisher's website Foliations (Mathematics) Differential topology Electronic books Blätterung (DE-588)4007006-2 gnd rswk-swf Differentialtopologie (DE-588)4012255-4 gnd rswk-swf Differentialtopologie (DE-588)4012255-4 s Blätterung (DE-588)4007006-2 s 1\p DE-604 Rojas, Carlos Arnoldo Morales Sonstige oth http://www.worldscientific.com/worldscibooks/10.1142/10366#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Scardua, Bruno Geometry, dynamics and topology of foliations a first course Foliations (Mathematics) Differential topology Electronic books Blätterung (DE-588)4007006-2 gnd Differentialtopologie (DE-588)4012255-4 gnd |
subject_GND | (DE-588)4007006-2 (DE-588)4012255-4 |
title | Geometry, dynamics and topology of foliations a first course |
title_auth | Geometry, dynamics and topology of foliations a first course |
title_exact_search | Geometry, dynamics and topology of foliations a first course |
title_full | Geometry, dynamics and topology of foliations a first course Bruno Scardua, Carlos Arnoldo Morales Rojas |
title_fullStr | Geometry, dynamics and topology of foliations a first course Bruno Scardua, Carlos Arnoldo Morales Rojas |
title_full_unstemmed | Geometry, dynamics and topology of foliations a first course Bruno Scardua, Carlos Arnoldo Morales Rojas |
title_short | Geometry, dynamics and topology of foliations |
title_sort | geometry dynamics and topology of foliations a first course |
title_sub | a first course |
topic | Foliations (Mathematics) Differential topology Electronic books Blätterung (DE-588)4007006-2 gnd Differentialtopologie (DE-588)4012255-4 gnd |
topic_facet | Foliations (Mathematics) Differential topology Electronic books Blätterung Differentialtopologie |
url | http://www.worldscientific.com/worldscibooks/10.1142/10366#t=toc |
work_keys_str_mv | AT scarduabruno geometrydynamicsandtopologyoffoliationsafirstcourse AT rojascarlosarnoldomorales geometrydynamicsandtopologyoffoliationsafirstcourse |