The principles of Newtonian and quantum mechanics: the need for Planck's constant, h
"The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the li...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Co. Pte Ltd.
c2017
|
Ausgabe: | 2nd ed |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | "The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect."--Publisher's website |
Beschreibung: | Title from PDF file title page (viewed November 16, 2016) |
Beschreibung: | 1 online resource (423 p.) ill |
ISBN: | 9789813200975 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044637459 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2017 |||| o||u| ||||||eng d | ||
020 | |a 9789813200975 |c ebook |9 978-981-3200-97-5 | ||
024 | 7 | |a 10.1142/10307 |2 doi | |
035 | |a (ZDB-124-WOP)00010307 | ||
035 | |a (OCoLC)1012655471 | ||
035 | |a (DE-599)BVBBV044637459 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.15/564 |2 23 | |
100 | 1 | |a Gosson, Maurice de |e Verfasser |4 aut | |
245 | 1 | 0 | |a The principles of Newtonian and quantum mechanics |b the need for Planck's constant, h |c M A de Gosson ; foreword by Basil Hiley |
250 | |a 2nd ed | ||
264 | 1 | |a Singapore |b World Scientific Publishing Co. Pte Ltd. |c c2017 | |
300 | |a 1 online resource (423 p.) |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from PDF file title page (viewed November 16, 2016) | ||
520 | |a "The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect."--Publisher's website | ||
650 | 4 | |a Lagrangian functions | |
650 | 4 | |a Maslov index | |
650 | 4 | |a Geometric quantization | |
650 | 4 | |a Electronic books | |
650 | 0 | 7 | |a Maslov-Index |0 (DE-588)4169023-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanik |0 (DE-588)4038168-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mechanik |0 (DE-588)4038168-7 |D s |
689 | 0 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 2 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | 3 | |a Symplektische Geometrie |0 (DE-588)4194232-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lagrange-Funktion |0 (DE-588)4166459-0 |D s |
689 | 1 | 1 | |a Maslov-Index |0 (DE-588)4169023-0 |D s |
689 | 1 | 2 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Hiley, Basil |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030035430 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178052959174656 |
---|---|
any_adam_object | |
author | Gosson, Maurice de |
author_facet | Gosson, Maurice de |
author_role | aut |
author_sort | Gosson, Maurice de |
author_variant | m d g md mdg |
building | Verbundindex |
bvnumber | BV044637459 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00010307 (OCoLC)1012655471 (DE-599)BVBBV044637459 |
dewey-full | 530.15/564 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/564 |
dewey-search | 530.15/564 |
dewey-sort | 3530.15 3564 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03678nmm a2200637zc 4500</leader><controlfield tag="001">BV044637459</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813200975</subfield><subfield code="c">ebook</subfield><subfield code="9">978-981-3200-97-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10307</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00010307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012655471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637459</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/564</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gosson, Maurice de</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The principles of Newtonian and quantum mechanics</subfield><subfield code="b">the need for Planck's constant, h</subfield><subfield code="c">M A de Gosson ; foreword by Basil Hiley</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Co. Pte Ltd.</subfield><subfield code="c">c2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (423 p.)</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF file title page (viewed November 16, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect."--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrangian functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maslov index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric quantization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Symplektische Geometrie</subfield><subfield code="0">(DE-588)4194232-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lagrange-Funktion</subfield><subfield code="0">(DE-588)4166459-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maslov-Index</subfield><subfield code="0">(DE-588)4169023-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hiley, Basil</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030035430</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044637459 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:51Z |
institution | BVB |
isbn | 9789813200975 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030035430 |
oclc_num | 1012655471 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 1 online resource (423 p.) ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific Publishing Co. Pte Ltd. |
record_format | marc |
spelling | Gosson, Maurice de Verfasser aut The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson ; foreword by Basil Hiley 2nd ed Singapore World Scientific Publishing Co. Pte Ltd. c2017 1 online resource (423 p.) ill txt rdacontent c rdamedia cr rdacarrier Title from PDF file title page (viewed November 16, 2016) "The second edition of this book deals, as the first, with the foundations of classical physics from the "symplectic" point of view, and of quantum mechanics from the "metaplectic" point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the "principle of the symplectic camel", which is a deep topological property of Hamiltonian flows. We introduce the notion of "quantum blob", which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the "metatron" is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect."--Publisher's website Lagrangian functions Maslov index Geometric quantization Electronic books Maslov-Index (DE-588)4169023-0 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Lagrange-Funktion (DE-588)4166459-0 gnd rswk-swf Mechanik (DE-588)4038168-7 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Symplektische Geometrie (DE-588)4194232-2 gnd rswk-swf Mechanik (DE-588)4038168-7 s Quantenmechanik (DE-588)4047989-4 s Mathematische Physik (DE-588)4037952-8 s Symplektische Geometrie (DE-588)4194232-2 s 1\p DE-604 Lagrange-Funktion (DE-588)4166459-0 s Maslov-Index (DE-588)4169023-0 s Geometrische Quantisierung (DE-588)4156720-1 s 2\p DE-604 Hiley, Basil Sonstige oth http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gosson, Maurice de The principles of Newtonian and quantum mechanics the need for Planck's constant, h Lagrangian functions Maslov index Geometric quantization Electronic books Maslov-Index (DE-588)4169023-0 gnd Quantenmechanik (DE-588)4047989-4 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Mechanik (DE-588)4038168-7 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Symplektische Geometrie (DE-588)4194232-2 gnd |
subject_GND | (DE-588)4169023-0 (DE-588)4047989-4 (DE-588)4166459-0 (DE-588)4038168-7 (DE-588)4156720-1 (DE-588)4037952-8 (DE-588)4194232-2 |
title | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_auth | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_exact_search | The principles of Newtonian and quantum mechanics the need for Planck's constant, h |
title_full | The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson ; foreword by Basil Hiley |
title_fullStr | The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson ; foreword by Basil Hiley |
title_full_unstemmed | The principles of Newtonian and quantum mechanics the need for Planck's constant, h M A de Gosson ; foreword by Basil Hiley |
title_short | The principles of Newtonian and quantum mechanics |
title_sort | the principles of newtonian and quantum mechanics the need for planck s constant h |
title_sub | the need for Planck's constant, h |
topic | Lagrangian functions Maslov index Geometric quantization Electronic books Maslov-Index (DE-588)4169023-0 gnd Quantenmechanik (DE-588)4047989-4 gnd Lagrange-Funktion (DE-588)4166459-0 gnd Mechanik (DE-588)4038168-7 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Symplektische Geometrie (DE-588)4194232-2 gnd |
topic_facet | Lagrangian functions Maslov index Geometric quantization Electronic books Maslov-Index Quantenmechanik Lagrange-Funktion Mechanik Geometrische Quantisierung Mathematische Physik Symplektische Geometrie |
url | http://www.worldscientific.com/worldscibooks/10.1142/10307#t=toc |
work_keys_str_mv | AT gossonmauricede theprinciplesofnewtonianandquantummechanicstheneedforplancksconstanth AT hileybasil theprinciplesofnewtonianandquantummechanicstheneedforplancksconstanth |