Spectral geometry of the Laplacian: spectral analysis and differential geometry of the Laplacian
"The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz–...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
© 2017
|
Schlagworte: | |
Online-Zugang: | BTU01 FHN01 Volltext |
Zusammenfassung: | "The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz–Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne–Pólya–Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdière, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature."--Publisher's website |
Beschreibung: | Title from PDF title page (viewed July 27, 2017) |
Beschreibung: | 1 Online-Ressource (xii, 297 Seiten) Diagramme |
ISBN: | 9789813109094 |
DOI: | 10.1142/10018 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044637261 | ||
003 | DE-604 | ||
005 | 20210120 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2017 |||| o||u| ||||||eng d | ||
020 | |a 9789813109094 |9 978-981-3109-09-4 | ||
024 | 7 | |a 10.1142/10018 |2 doi | |
035 | |a (ZDB-124-WOP)00010018 | ||
035 | |a (ZDB-124-WOP)9789813109094 | ||
035 | |a (OCoLC)1012634051 | ||
035 | |a (DE-599)BVBBV044637261 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-634 | ||
082 | 0 | |a 516.362 |2 23 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Urakawa, Hajime |d 1946- |e Verfasser |0 (DE-588)1139293192 |4 aut | |
245 | 1 | 0 | |a Spectral geometry of the Laplacian |b spectral analysis and differential geometry of the Laplacian |c by Hajime Urakawa |
264 | 1 | |a Singapore |b World Scientific |c © 2017 | |
300 | |a 1 Online-Ressource (xii, 297 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from PDF title page (viewed July 27, 2017) | ||
520 | |a "The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz–Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne–Pólya–Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdière, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature."--Publisher's website | ||
650 | 4 | |a Symmetric matrices | |
650 | 4 | |a Eigenvalues | |
650 | 4 | |a Spectral geometry | |
650 | 4 | |a Riemannian manifolds | |
650 | 4 | |a Electronic books | |
650 | 0 | 7 | |a Spektralgeometrie |0 (DE-588)4128531-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Laplace-Operator |0 (DE-588)4166772-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laplace-Operator |0 (DE-588)4166772-4 |D s |
689 | 0 | 1 | |a Spektralgeometrie |0 (DE-588)4128531-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789813109087 |
856 | 4 | 0 | |u https://doi.org/10.1142/10018 |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030035232 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/10018#t=toc |l BTU01 |p ZDB-124-WOP |q BTU_Kauf |x Verlag |3 Volltext | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/10018#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178052571201536 |
---|---|
any_adam_object | |
author | Urakawa, Hajime 1946- |
author_GND | (DE-588)1139293192 |
author_facet | Urakawa, Hajime 1946- |
author_role | aut |
author_sort | Urakawa, Hajime 1946- |
author_variant | h u hu |
building | Verbundindex |
bvnumber | BV044637261 |
classification_rvk | SK 370 |
collection | ZDB-124-WOP ebook |
ctrlnum | (ZDB-124-WOP)00010018 (ZDB-124-WOP)9789813109094 (OCoLC)1012634051 (DE-599)BVBBV044637261 |
dewey-full | 516.362 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.362 |
dewey-search | 516.362 |
dewey-sort | 3516.362 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1142/10018 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02770nmm a2200517zc 4500</leader><controlfield tag="001">BV044637261</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210120 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813109094</subfield><subfield code="9">978-981-3109-09-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/10018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00010018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)9789813109094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012634051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637261</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.362</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Urakawa, Hajime</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1139293192</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral geometry of the Laplacian</subfield><subfield code="b">spectral analysis and differential geometry of the Laplacian</subfield><subfield code="c">by Hajime Urakawa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 297 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed July 27, 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz–Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne–Pólya–Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdière, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature."--Publisher's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eigenvalues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektralgeometrie</subfield><subfield code="0">(DE-588)4128531-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laplace-Operator</subfield><subfield code="0">(DE-588)4166772-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laplace-Operator</subfield><subfield code="0">(DE-588)4166772-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektralgeometrie</subfield><subfield code="0">(DE-588)4128531-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813109087</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/10018</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030035232</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10018#t=toc</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">BTU_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/10018#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044637261 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:50Z |
institution | BVB |
isbn | 9789813109094 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030035232 |
oclc_num | 1012634051 |
open_access_boolean | |
owner | DE-92 DE-634 |
owner_facet | DE-92 DE-634 |
physical | 1 Online-Ressource (xii, 297 Seiten) Diagramme |
psigel | ZDB-124-WOP ebook ZDB-124-WOP BTU_Kauf ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific |
record_format | marc |
spelling | Urakawa, Hajime 1946- Verfasser (DE-588)1139293192 aut Spectral geometry of the Laplacian spectral analysis and differential geometry of the Laplacian by Hajime Urakawa Singapore World Scientific © 2017 1 Online-Ressource (xii, 297 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Title from PDF title page (viewed July 27, 2017) "The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz–Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne–Pólya–Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdière, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature."--Publisher's website Symmetric matrices Eigenvalues Spectral geometry Riemannian manifolds Electronic books Spektralgeometrie (DE-588)4128531-1 gnd rswk-swf Laplace-Operator (DE-588)4166772-4 gnd rswk-swf Laplace-Operator (DE-588)4166772-4 s Spektralgeometrie (DE-588)4128531-1 s DE-604 Erscheint auch als Druck-Ausgabe 9789813109087 https://doi.org/10.1142/10018 URL des Erstveröffentlichers Volltext |
spellingShingle | Urakawa, Hajime 1946- Spectral geometry of the Laplacian spectral analysis and differential geometry of the Laplacian Symmetric matrices Eigenvalues Spectral geometry Riemannian manifolds Electronic books Spektralgeometrie (DE-588)4128531-1 gnd Laplace-Operator (DE-588)4166772-4 gnd |
subject_GND | (DE-588)4128531-1 (DE-588)4166772-4 |
title | Spectral geometry of the Laplacian spectral analysis and differential geometry of the Laplacian |
title_auth | Spectral geometry of the Laplacian spectral analysis and differential geometry of the Laplacian |
title_exact_search | Spectral geometry of the Laplacian spectral analysis and differential geometry of the Laplacian |
title_full | Spectral geometry of the Laplacian spectral analysis and differential geometry of the Laplacian by Hajime Urakawa |
title_fullStr | Spectral geometry of the Laplacian spectral analysis and differential geometry of the Laplacian by Hajime Urakawa |
title_full_unstemmed | Spectral geometry of the Laplacian spectral analysis and differential geometry of the Laplacian by Hajime Urakawa |
title_short | Spectral geometry of the Laplacian |
title_sort | spectral geometry of the laplacian spectral analysis and differential geometry of the laplacian |
title_sub | spectral analysis and differential geometry of the Laplacian |
topic | Symmetric matrices Eigenvalues Spectral geometry Riemannian manifolds Electronic books Spektralgeometrie (DE-588)4128531-1 gnd Laplace-Operator (DE-588)4166772-4 gnd |
topic_facet | Symmetric matrices Eigenvalues Spectral geometry Riemannian manifolds Electronic books Spektralgeometrie Laplace-Operator |
url | https://doi.org/10.1142/10018 |
work_keys_str_mv | AT urakawahajime spectralgeometryofthelaplacianspectralanalysisanddifferentialgeometryofthelaplacian |