Advanced classical field theory:
Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory an...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2009
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories - gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory - are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained |
Beschreibung: | x, 382 p |
ISBN: | 9789812838964 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044637195 | ||
003 | DE-604 | ||
005 | 20220517 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2009 |||| o||u| ||||||eng d | ||
020 | |a 9789812838964 |c electronic bk. |9 978-981-283-896-4 | ||
024 | 7 | |a 10.1142/7189 |2 doi | |
035 | |a (ZDB-124-WOP)00002111 | ||
035 | |a (OCoLC)740798013 | ||
035 | |a (DE-599)BVBBV044637195 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.14 |2 22 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Giachetta, G. |d 1961-2014 |e Verfasser |0 (DE-588)1192332954 |4 aut | |
245 | 1 | 0 | |a Advanced classical field theory |c Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily |
264 | 1 | |a Singapore |b World Scientific |c c2009 | |
300 | |a x, 382 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories - gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory - are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained | ||
650 | 4 | |a Field theory (Physics) / Mathematics | |
650 | 4 | |a Lagrange equations | |
650 | 0 | 7 | |a Feldtheorie |0 (DE-588)4016698-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Feldtheorie |0 (DE-588)4016698-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Mangiarotti, Luigi |e Sonstige |0 (DE-588)141878053 |4 oth | |
700 | 1 | |a Sardanašvili, Gennadij A. |d 1950- |e Sonstige |0 (DE-588)14187810X |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789812838957 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9812838953 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/7189#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030035166 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/7189#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178052505141248 |
---|---|
any_adam_object | |
author | Giachetta, G. 1961-2014 |
author_GND | (DE-588)1192332954 (DE-588)141878053 (DE-588)14187810X |
author_facet | Giachetta, G. 1961-2014 |
author_role | aut |
author_sort | Giachetta, G. 1961-2014 |
author_variant | g g gg |
building | Verbundindex |
bvnumber | BV044637195 |
classification_rvk | SK 950 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00002111 (OCoLC)740798013 (DE-599)BVBBV044637195 |
dewey-full | 530.14 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14 |
dewey-search | 530.14 |
dewey-sort | 3530.14 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03074nmm a2200469zc 4500</leader><controlfield tag="001">BV044637195</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220517 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812838964</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-896-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/7189</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00002111 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)740798013</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637195</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giachetta, G.</subfield><subfield code="d">1961-2014</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1192332954</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced classical field theory</subfield><subfield code="c">Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 382 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories - gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory - are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics) / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrange equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mangiarotti, Luigi</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)141878053</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sardanašvili, Gennadij A.</subfield><subfield code="d">1950-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)14187810X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812838957</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812838953</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7189#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030035166</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7189#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044637195 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:50Z |
institution | BVB |
isbn | 9789812838964 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030035166 |
oclc_num | 740798013 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 382 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific |
record_format | marc |
spelling | Giachetta, G. 1961-2014 Verfasser (DE-588)1192332954 aut Advanced classical field theory Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily Singapore World Scientific c2009 x, 382 p txt rdacontent c rdamedia cr rdacarrier Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories - gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory - are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained Field theory (Physics) / Mathematics Lagrange equations Feldtheorie (DE-588)4016698-3 gnd rswk-swf Feldtheorie (DE-588)4016698-3 s 1\p DE-604 Mangiarotti, Luigi Sonstige (DE-588)141878053 oth Sardanašvili, Gennadij A. 1950- Sonstige (DE-588)14187810X oth Erscheint auch als Druck-Ausgabe 9789812838957 Erscheint auch als Druck-Ausgabe 9812838953 http://www.worldscientific.com/worldscibooks/10.1142/7189#t=toc Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Giachetta, G. 1961-2014 Advanced classical field theory Field theory (Physics) / Mathematics Lagrange equations Feldtheorie (DE-588)4016698-3 gnd |
subject_GND | (DE-588)4016698-3 |
title | Advanced classical field theory |
title_auth | Advanced classical field theory |
title_exact_search | Advanced classical field theory |
title_full | Advanced classical field theory Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily |
title_fullStr | Advanced classical field theory Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily |
title_full_unstemmed | Advanced classical field theory Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily |
title_short | Advanced classical field theory |
title_sort | advanced classical field theory |
topic | Field theory (Physics) / Mathematics Lagrange equations Feldtheorie (DE-588)4016698-3 gnd |
topic_facet | Field theory (Physics) / Mathematics Lagrange equations Feldtheorie |
url | http://www.worldscientific.com/worldscibooks/10.1142/7189#t=toc |
work_keys_str_mv | AT giachettag advancedclassicalfieldtheory AT mangiarottiluigi advancedclassicalfieldtheory AT sardanasviligennadija advancedclassicalfieldtheory |