Linear operator equations: approximation and regularization
Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2009
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be. This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book |
Beschreibung: | xiii, 249 p |
ISBN: | 9789812835659 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044637084 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2009 |||| o||u| ||||||eng d | ||
020 | |a 9789812835659 |c electronic bk. |9 978-981-283-565-9 | ||
024 | 7 | |a 10.1142/7055 |2 doi | |
035 | |a (ZDB-124-WOP)00002089 | ||
035 | |a (OCoLC)1012664843 | ||
035 | |a (DE-599)BVBBV044637084 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.7246 |2 22 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Nair, M. Thamban |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear operator equations |b approximation and regularization |c M. Thamban Nair |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2009 | |
300 | |a xiii, 249 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be. This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book | ||
650 | 4 | |a Linear operators | |
650 | 4 | |a Operator equations | |
650 | 0 | 7 | |a Lineare Operatorgleichung |0 (DE-588)4123658-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Operatorgleichung |0 (DE-588)4123658-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789812835642 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9812835644 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/7055#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030035056 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/7055#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178052465295360 |
---|---|
any_adam_object | |
author | Nair, M. Thamban |
author_facet | Nair, M. Thamban |
author_role | aut |
author_sort | Nair, M. Thamban |
author_variant | m t n mt mtn |
building | Verbundindex |
bvnumber | BV044637084 |
classification_rvk | SK 620 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00002089 (OCoLC)1012664843 (DE-599)BVBBV044637084 |
dewey-full | 515.7246 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7246 |
dewey-search | 515.7246 |
dewey-sort | 3515.7246 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02605nmm a2200445zc 4500</leader><controlfield tag="001">BV044637084</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812835659</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-565-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/7055</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00002089 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012664843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637084</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7246</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nair, M. Thamban</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear operator equations</subfield><subfield code="b">approximation and regularization</subfield><subfield code="c">M. Thamban Nair</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 249 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be. This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Operatorgleichung</subfield><subfield code="0">(DE-588)4123658-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Operatorgleichung</subfield><subfield code="0">(DE-588)4123658-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812835642</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812835644</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7055#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030035056</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/7055#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044637084 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:50Z |
institution | BVB |
isbn | 9789812835659 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030035056 |
oclc_num | 1012664843 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiii, 249 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Nair, M. Thamban Verfasser aut Linear operator equations approximation and regularization M. Thamban Nair Singapore World Scientific Pub. Co. c2009 xiii, 249 p txt rdacontent c rdamedia cr rdacarrier Many problems in science and engineering have their mathematical formulation as an operator equation Tx=y, where T is a linear or nonlinear operator between certain function spaces. In practice, such equations are solved approximately using numerical methods, as their exact solution may not often be possible or may not be worth looking for due to physical constraints. In such situations, it is desirable to know how the so-called approximate solution approximates the exact solution, and what the error involved in such procedures would be. This book is concerned with the investigation of the above theoretical issues related to approximately solving linear operator equations. The main tools used for this purpose are basic results from functional analysis and some rudimentary ideas from numerical analysis. To make this book more accessible to readers, no in-depth knowledge on these disciplines is assumed for reading this book Linear operators Operator equations Lineare Operatorgleichung (DE-588)4123658-0 gnd rswk-swf Lineare Operatorgleichung (DE-588)4123658-0 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789812835642 Erscheint auch als Druck-Ausgabe 9812835644 http://www.worldscientific.com/worldscibooks/10.1142/7055#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nair, M. Thamban Linear operator equations approximation and regularization Linear operators Operator equations Lineare Operatorgleichung (DE-588)4123658-0 gnd |
subject_GND | (DE-588)4123658-0 |
title | Linear operator equations approximation and regularization |
title_auth | Linear operator equations approximation and regularization |
title_exact_search | Linear operator equations approximation and regularization |
title_full | Linear operator equations approximation and regularization M. Thamban Nair |
title_fullStr | Linear operator equations approximation and regularization M. Thamban Nair |
title_full_unstemmed | Linear operator equations approximation and regularization M. Thamban Nair |
title_short | Linear operator equations |
title_sort | linear operator equations approximation and regularization |
title_sub | approximation and regularization |
topic | Linear operators Operator equations Lineare Operatorgleichung (DE-588)4123658-0 gnd |
topic_facet | Linear operators Operator equations Lineare Operatorgleichung |
url | http://www.worldscientific.com/worldscibooks/10.1142/7055#t=toc |
work_keys_str_mv | AT nairmthamban linearoperatorequationsapproximationandregularization |