Multiplier convergent series:
If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally c...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2009
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in [symbol] are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers |
Beschreibung: | x, 253 p |
ISBN: | 9789812833884 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044637026 | ||
003 | DE-604 | ||
005 | 20180222 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2009 |||| o||u| ||||||eng d | ||
020 | |a 9789812833884 |c electronic bk. |9 978-981-283-388-4 | ||
024 | 7 | |a 10.1142/6977 |2 doi | |
035 | |a (ZDB-124-WOP)00000857 | ||
035 | |a (OCoLC)1012717612 | ||
035 | |a (DE-599)BVBBV044637026 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.243 |2 22 | |
100 | 1 | |a Swartz, Charles |d 1938- |e Verfasser |0 (DE-588)131653601 |4 aut | |
245 | 1 | 0 | |a Multiplier convergent series |c Charles Swartz |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2009 | |
300 | |a x, 253 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in [symbol] are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers | ||
650 | 4 | |a Convergence | |
650 | 4 | |a Series, Arithmetic | |
650 | 4 | |a Multipliers (Mathematical analysis) | |
650 | 4 | |a Orlicz spaces | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789812833877 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9812833870 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/6977#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034998 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/6977#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178052401332224 |
---|---|
any_adam_object | |
author | Swartz, Charles 1938- |
author_GND | (DE-588)131653601 |
author_facet | Swartz, Charles 1938- |
author_role | aut |
author_sort | Swartz, Charles 1938- |
author_variant | c s cs |
building | Verbundindex |
bvnumber | BV044637026 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00000857 (OCoLC)1012717612 (DE-599)BVBBV044637026 |
dewey-full | 515.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.243 |
dewey-search | 515.243 |
dewey-sort | 3515.243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02207nmm a2200409zc 4500</leader><controlfield tag="001">BV044637026</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180222 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812833884</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-388-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/6977</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00000857 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012717612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044637026</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.243</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swartz, Charles</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131653601</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplier convergent series</subfield><subfield code="c">Charles Swartz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 253 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in [symbol] are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series, Arithmetic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multipliers (Mathematical analysis)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orlicz spaces</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812833877</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812833870</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6977#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034998</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6977#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044637026 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:50Z |
institution | BVB |
isbn | 9789812833884 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034998 |
oclc_num | 1012717612 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 253 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Swartz, Charles 1938- Verfasser (DE-588)131653601 aut Multiplier convergent series Charles Swartz Singapore World Scientific Pub. Co. c2009 x, 253 p txt rdacontent c rdamedia cr rdacarrier If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in [symbol] are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers Convergence Series, Arithmetic Multipliers (Mathematical analysis) Orlicz spaces Erscheint auch als Druck-Ausgabe 9789812833877 Erscheint auch als Druck-Ausgabe 9812833870 http://www.worldscientific.com/worldscibooks/10.1142/6977#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Swartz, Charles 1938- Multiplier convergent series Convergence Series, Arithmetic Multipliers (Mathematical analysis) Orlicz spaces |
title | Multiplier convergent series |
title_auth | Multiplier convergent series |
title_exact_search | Multiplier convergent series |
title_full | Multiplier convergent series Charles Swartz |
title_fullStr | Multiplier convergent series Charles Swartz |
title_full_unstemmed | Multiplier convergent series Charles Swartz |
title_short | Multiplier convergent series |
title_sort | multiplier convergent series |
topic | Convergence Series, Arithmetic Multipliers (Mathematical analysis) Orlicz spaces |
topic_facet | Convergence Series, Arithmetic Multipliers (Mathematical analysis) Orlicz spaces |
url | http://www.worldscientific.com/worldscibooks/10.1142/6977#t=toc |
work_keys_str_mv | AT swartzcharles multiplierconvergentseries |