Multiplier convergent series:

If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Swartz, Charles 1938- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c2009
Schlagworte:
Online-Zugang:FHN01
URL des Erstveroeffentlichers
Zusammenfassung:If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in [symbol] are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers
Beschreibung:x, 253 p
ISBN:9789812833884

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!