Two reports on harmonic maps:

Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, σ-models in physics. Recently, they have become powerful tools in the study of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Eells, James 1926-2007 (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c1995
Schlagworte:
Online-Zugang:FHN01
Volltext
Zusammenfassung:Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, σ-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and Kählerian manifolds. A standard reference for this subject is a pair of reports, published in 1978 and 1988 by James Eells and Luc Lemaire. This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers
Beschreibung:ix, 216 p. ill
ISBN:9789812832030