Two reports on harmonic maps:
Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, σ-models in physics. Recently, they have become powerful tools in the study of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1995
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, σ-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and Kählerian manifolds. A standard reference for this subject is a pair of reports, published in 1978 and 1988 by James Eells and Luc Lemaire. This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers |
Beschreibung: | ix, 216 p. ill |
ISBN: | 9789812832030 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636940 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1995 |||| o||u| ||||||eng d | ||
020 | |a 9789812832030 |9 978-981-283-203-0 | ||
024 | 7 | |a 10.1142/2088 |2 doi | |
035 | |a (ZDB-124-WOP)00005045 | ||
035 | |a (OCoLC)1012643864 | ||
035 | |a (DE-599)BVBBV044636940 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 514.74 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Eells, James |d 1926-2007 |e Verfasser |4 aut | |
245 | 1 | 0 | |a Two reports on harmonic maps |c James Eells and Luc Lemaire |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1995 | |
300 | |a ix, 216 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, σ-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and Kählerian manifolds. A standard reference for this subject is a pair of reports, published in 1978 and 1988 by James Eells and Luc Lemaire. This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers | ||
650 | 4 | |a Harmonic maps | |
650 | 4 | |a Mappings (Mathematics) | |
650 | 0 | 7 | |a Harmonische Abbildung |0 (DE-588)4023452-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Abbildung |0 (DE-588)4023452-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Lemaire, Luc |d 1950- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810214661 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810214669 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2088#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034913 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2088#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178052003921920 |
---|---|
any_adam_object | |
author | Eells, James 1926-2007 |
author_facet | Eells, James 1926-2007 |
author_role | aut |
author_sort | Eells, James 1926-2007 |
author_variant | j e je |
building | Verbundindex |
bvnumber | BV044636940 |
classification_rvk | SK 370 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005045 (OCoLC)1012643864 (DE-599)BVBBV044636940 |
dewey-full | 514.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.74 |
dewey-search | 514.74 |
dewey-sort | 3514.74 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02456nmm a2200457zc 4500</leader><controlfield tag="001">BV044636940</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812832030</subfield><subfield code="9">978-981-283-203-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012643864</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636940</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eells, James</subfield><subfield code="d">1926-2007</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two reports on harmonic maps</subfield><subfield code="c">James Eells and Luc Lemaire</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 216 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, σ-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and Kählerian manifolds. A standard reference for this subject is a pair of reports, published in 1978 and 1988 by James Eells and Luc Lemaire. This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mappings (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Abbildung</subfield><subfield code="0">(DE-588)4023452-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Abbildung</subfield><subfield code="0">(DE-588)4023452-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lemaire, Luc</subfield><subfield code="d">1950-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810214661</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810214669</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2088#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034913</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2088#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636940 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:50Z |
institution | BVB |
isbn | 9789812832030 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034913 |
oclc_num | 1012643864 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | ix, 216 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Eells, James 1926-2007 Verfasser aut Two reports on harmonic maps James Eells and Luc Lemaire Singapore World Scientific Pub. Co. c1995 ix, 216 p. ill txt rdacontent c rdamedia cr rdacarrier Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, σ-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and Kählerian manifolds. A standard reference for this subject is a pair of reports, published in 1978 and 1988 by James Eells and Luc Lemaire. This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers Harmonic maps Mappings (Mathematics) Harmonische Abbildung (DE-588)4023452-6 gnd rswk-swf Harmonische Abbildung (DE-588)4023452-6 s 1\p DE-604 Lemaire, Luc 1950- Sonstige oth Erscheint auch als Druck-Ausgabe 9789810214661 Erscheint auch als Druck-Ausgabe 9810214669 http://www.worldscientific.com/worldscibooks/10.1142/2088#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Eells, James 1926-2007 Two reports on harmonic maps Harmonic maps Mappings (Mathematics) Harmonische Abbildung (DE-588)4023452-6 gnd |
subject_GND | (DE-588)4023452-6 |
title | Two reports on harmonic maps |
title_auth | Two reports on harmonic maps |
title_exact_search | Two reports on harmonic maps |
title_full | Two reports on harmonic maps James Eells and Luc Lemaire |
title_fullStr | Two reports on harmonic maps James Eells and Luc Lemaire |
title_full_unstemmed | Two reports on harmonic maps James Eells and Luc Lemaire |
title_short | Two reports on harmonic maps |
title_sort | two reports on harmonic maps |
topic | Harmonic maps Mappings (Mathematics) Harmonische Abbildung (DE-588)4023452-6 gnd |
topic_facet | Harmonic maps Mappings (Mathematics) Harmonische Abbildung |
url | http://www.worldscientific.com/worldscibooks/10.1142/2088#t=toc |
work_keys_str_mv | AT eellsjames tworeportsonharmonicmaps AT lemaireluc tworeportsonharmonicmaps |