Abstract homotopy and simple homotopy theory:

The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kamps, Klaus Heiner (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c1997
Schlagworte:
Online-Zugang:FHN01
URL des Erstveroeffentlichers
Zusammenfassung:The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy structure, such as cylinders and path space constructions, enables not only a unified development of many examples of known homotopy theories but also reveals the inner working of the classical spatial theory. This demonstrates the logical interdependence of properties (in particular the existence of certain Kan fillers in associated cubical sets) and results (Puppe sequences, Vogt's Iemma, Dold's theorem on fibre homotopy equivalences, and homotopy coherence theory)
Beschreibung:ix, 462 p. ill
ISBN:9789812831989

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!