Generalizations of Steinberg groups:
The Steinberg relations are the commutator relations which hold between elementary matrices in a special linear group. This book generalizes these sorts of relations. To encode these relations one needs a ring and a so-called linkage graph which specifies exactly which commutator relations hold. The...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1996
|
Schriftenreihe: | Series in algebra
v. 4 |
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | The Steinberg relations are the commutator relations which hold between elementary matrices in a special linear group. This book generalizes these sorts of relations. To encode these relations one needs a ring and a so-called linkage graph which specifies exactly which commutator relations hold. The groups obtained here, called linkage groups, have an enormous number of interesting images, finite and infinite. Among these images are, for example, 25 of the 26 finite sporadic simple groups. The book deals with the structure and classification of linkage groups. Part of the work involves theoretical group combinatorics and the other part involves computer calculations to study the linkage structure of various interesting groups. The book will be of value to researchers and graduate students in combinatorial and computational group theory |
Beschreibung: | xiii, 230 p. ill |
ISBN: | 9789812831514 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044636895 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789812831514 |9 978-981-283-151-4 | ||
024 | 7 | |a 10.1142/2538 |2 doi | |
035 | |a (ZDB-124-WOP)00004773 | ||
035 | |a (OCoLC)1005231442 | ||
035 | |a (DE-599)BVBBV044636895 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 512/.55 |2 22 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Fournelle, T. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Generalizations of Steinberg groups |c T.A. Fournelle, K.W. Weston |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1996 | |
300 | |a xiii, 230 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in algebra |v v. 4 | |
520 | |a The Steinberg relations are the commutator relations which hold between elementary matrices in a special linear group. This book generalizes these sorts of relations. To encode these relations one needs a ring and a so-called linkage graph which specifies exactly which commutator relations hold. The groups obtained here, called linkage groups, have an enormous number of interesting images, finite and infinite. Among these images are, for example, 25 of the 26 finite sporadic simple groups. The book deals with the structure and classification of linkage groups. Part of the work involves theoretical group combinatorics and the other part involves computer calculations to study the linkage structure of various interesting groups. The book will be of value to researchers and graduate students in combinatorial and computational group theory | ||
650 | 4 | |a Group theory / Relations | |
650 | 0 | 7 | |a Steinberg-Gruppe |0 (DE-588)4202757-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Steinberg-Gruppe |0 (DE-588)4202757-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Weston, K. W. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810220280 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810220286 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2538#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034868 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2538#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178051950444544 |
---|---|
any_adam_object | |
author | Fournelle, T. A. |
author_facet | Fournelle, T. A. |
author_role | aut |
author_sort | Fournelle, T. A. |
author_variant | t a f ta taf |
building | Verbundindex |
bvnumber | BV044636895 |
classification_rvk | SK 260 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004773 (OCoLC)1005231442 (DE-599)BVBBV044636895 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02530nmm a2200457zcb4500</leader><controlfield tag="001">BV044636895</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812831514</subfield><subfield code="9">978-981-283-151-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005231442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636895</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fournelle, T. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalizations of Steinberg groups</subfield><subfield code="c">T.A. Fournelle, K.W. Weston</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 230 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in algebra</subfield><subfield code="v">v. 4</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Steinberg relations are the commutator relations which hold between elementary matrices in a special linear group. This book generalizes these sorts of relations. To encode these relations one needs a ring and a so-called linkage graph which specifies exactly which commutator relations hold. The groups obtained here, called linkage groups, have an enormous number of interesting images, finite and infinite. Among these images are, for example, 25 of the 26 finite sporadic simple groups. The book deals with the structure and classification of linkage groups. Part of the work involves theoretical group combinatorics and the other part involves computer calculations to study the linkage structure of various interesting groups. The book will be of value to researchers and graduate students in combinatorial and computational group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory / Relations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Steinberg-Gruppe</subfield><subfield code="0">(DE-588)4202757-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Steinberg-Gruppe</subfield><subfield code="0">(DE-588)4202757-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weston, K. W.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810220280</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810220286</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2538#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034868</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2538#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636895 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:50Z |
institution | BVB |
isbn | 9789812831514 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034868 |
oclc_num | 1005231442 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiii, 230 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series in algebra |
spelling | Fournelle, T. A. Verfasser aut Generalizations of Steinberg groups T.A. Fournelle, K.W. Weston Singapore World Scientific Pub. Co. c1996 xiii, 230 p. ill txt rdacontent c rdamedia cr rdacarrier Series in algebra v. 4 The Steinberg relations are the commutator relations which hold between elementary matrices in a special linear group. This book generalizes these sorts of relations. To encode these relations one needs a ring and a so-called linkage graph which specifies exactly which commutator relations hold. The groups obtained here, called linkage groups, have an enormous number of interesting images, finite and infinite. Among these images are, for example, 25 of the 26 finite sporadic simple groups. The book deals with the structure and classification of linkage groups. Part of the work involves theoretical group combinatorics and the other part involves computer calculations to study the linkage structure of various interesting groups. The book will be of value to researchers and graduate students in combinatorial and computational group theory Group theory / Relations Steinberg-Gruppe (DE-588)4202757-3 gnd rswk-swf Steinberg-Gruppe (DE-588)4202757-3 s 1\p DE-604 Weston, K. W. Sonstige oth Erscheint auch als Druck-Ausgabe 9789810220280 Erscheint auch als Druck-Ausgabe 9810220286 http://www.worldscientific.com/worldscibooks/10.1142/2538#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fournelle, T. A. Generalizations of Steinberg groups Group theory / Relations Steinberg-Gruppe (DE-588)4202757-3 gnd |
subject_GND | (DE-588)4202757-3 |
title | Generalizations of Steinberg groups |
title_auth | Generalizations of Steinberg groups |
title_exact_search | Generalizations of Steinberg groups |
title_full | Generalizations of Steinberg groups T.A. Fournelle, K.W. Weston |
title_fullStr | Generalizations of Steinberg groups T.A. Fournelle, K.W. Weston |
title_full_unstemmed | Generalizations of Steinberg groups T.A. Fournelle, K.W. Weston |
title_short | Generalizations of Steinberg groups |
title_sort | generalizations of steinberg groups |
topic | Group theory / Relations Steinberg-Gruppe (DE-588)4202757-3 gnd |
topic_facet | Group theory / Relations Steinberg-Gruppe |
url | http://www.worldscientific.com/worldscibooks/10.1142/2538#t=toc |
work_keys_str_mv | AT fournelleta generalizationsofsteinberggroups AT westonkw generalizationsofsteinberggroups |