Quantum group symmetry and q-tensor algebras:
Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1995
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics |
Beschreibung: | x, 293 p. ill |
ISBN: | 9789812830807 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636831 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1995 |||| o||u| ||||||eng d | ||
020 | |a 9789812830807 |c electronic bk. |9 978-981-283-080-7 | ||
024 | 7 | |a 10.1142/2815 |2 doi | |
035 | |a (ZDB-124-WOP)00003168 | ||
035 | |a (OCoLC)1012720728 | ||
035 | |a (DE-599)BVBBV044636831 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.120151255 |2 22 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Biedenharn, L. C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum group symmetry and q-tensor algebras |c L. C. Biedenharn, M. A. Lohe |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1995 | |
300 | |a x, 293 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics | ||
650 | 4 | |a Quantum groups | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Symmetry (Physics) | |
650 | 4 | |a Tensor algebra | |
700 | 1 | |a Lohe, M. A. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810223311 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810223315 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2815#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034804 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2815#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178051603365888 |
---|---|
any_adam_object | |
author | Biedenharn, L. C. |
author_facet | Biedenharn, L. C. |
author_role | aut |
author_sort | Biedenharn, L. C. |
author_variant | l c b lc lcb |
building | Verbundindex |
bvnumber | BV044636831 |
classification_rvk | SK 260 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003168 (OCoLC)1012720728 (DE-599)BVBBV044636831 |
dewey-full | 530.120151255 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.120151255 |
dewey-search | 530.120151255 |
dewey-sort | 3530.120151255 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02559nmm a2200433zc 4500</leader><controlfield tag="001">BV044636831</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812830807</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-080-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2815</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003168</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012720728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636831</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.120151255</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biedenharn, L. C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum group symmetry and q-tensor algebras</subfield><subfield code="c">L. C. Biedenharn, M. A. Lohe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 293 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensor algebra</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lohe, M. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810223311</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810223315</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2815#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034804</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2815#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636831 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812830807 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034804 |
oclc_num | 1012720728 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 293 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Biedenharn, L. C. Verfasser aut Quantum group symmetry and q-tensor algebras L. C. Biedenharn, M. A. Lohe Singapore World Scientific Pub. Co. c1995 x, 293 p. ill txt rdacontent c rdamedia cr rdacarrier Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics Quantum groups Quantum theory Symmetry (Physics) Tensor algebra Lohe, M. A. Sonstige oth Erscheint auch als Druck-Ausgabe 9789810223311 Erscheint auch als Druck-Ausgabe 9810223315 http://www.worldscientific.com/worldscibooks/10.1142/2815#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Biedenharn, L. C. Quantum group symmetry and q-tensor algebras Quantum groups Quantum theory Symmetry (Physics) Tensor algebra |
title | Quantum group symmetry and q-tensor algebras |
title_auth | Quantum group symmetry and q-tensor algebras |
title_exact_search | Quantum group symmetry and q-tensor algebras |
title_full | Quantum group symmetry and q-tensor algebras L. C. Biedenharn, M. A. Lohe |
title_fullStr | Quantum group symmetry and q-tensor algebras L. C. Biedenharn, M. A. Lohe |
title_full_unstemmed | Quantum group symmetry and q-tensor algebras L. C. Biedenharn, M. A. Lohe |
title_short | Quantum group symmetry and q-tensor algebras |
title_sort | quantum group symmetry and q tensor algebras |
topic | Quantum groups Quantum theory Symmetry (Physics) Tensor algebra |
topic_facet | Quantum groups Quantum theory Symmetry (Physics) Tensor algebra |
url | http://www.worldscientific.com/worldscibooks/10.1142/2815#t=toc |
work_keys_str_mv | AT biedenharnlc quantumgroupsymmetryandqtensoralgebras AT lohema quantumgroupsymmetryandqtensoralgebras |