Infinite matrices and the gliding hump:
These notes present a theorem on infinite matrices with values in a topological group due to P. Antosik and J. Mikusinski. Using the matrix theorem and classical gliding hump techniques, a number of applications to various topics in functional analysis, measure theory and sequence spaces are given....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1996
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | These notes present a theorem on infinite matrices with values in a topological group due to P. Antosik and J. Mikusinski. Using the matrix theorem and classical gliding hump techniques, a number of applications to various topics in functional analysis, measure theory and sequence spaces are given. There are a number of generalizations of the classical Uniform Boundedness Principle given; in particular, using stronger notions of sequential convergence and boundedness due to Antosik and Mikusinski, versions of the Uniform Boundedness Principle and the Banach-Steinhaus Theorem are given which, in contrast to the usual versions, require no completeness or barrelledness assumptions on the domain space. Versions of Nikodym Boundedness and Convergence Theorems of measure theory, the Orlicz-Pettis Theorem on subseries convergence, generalizations of the Schur Lemma on the equivalence of weak and norm convergence in l1 and the Mazur-Orlicz Theorem on the continuity of separately continuous bilinear mappings are also given. Finally, the matrix theorems are also employed to treat a number of topics in sequence spaces |
Beschreibung: | xi, 209 p |
ISBN: | 9789812830036 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636765 | ||
003 | DE-604 | ||
005 | 20180222 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789812830036 |9 978-981-283-003-6 | ||
024 | 7 | |a 10.1142/3167 |2 doi | |
035 | |a (ZDB-124-WOP)00004887 | ||
035 | |a (OCoLC)1012623506 | ||
035 | |a (DE-599)BVBBV044636765 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.7 |2 22 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
100 | 1 | |a Swartz, Charles |d 1938- |e Verfasser |0 (DE-588)131653601 |4 aut | |
245 | 1 | 0 | |a Infinite matrices and the gliding hump |c C. Swartz |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1996 | |
300 | |a xi, 209 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a These notes present a theorem on infinite matrices with values in a topological group due to P. Antosik and J. Mikusinski. Using the matrix theorem and classical gliding hump techniques, a number of applications to various topics in functional analysis, measure theory and sequence spaces are given. There are a number of generalizations of the classical Uniform Boundedness Principle given; in particular, using stronger notions of sequential convergence and boundedness due to Antosik and Mikusinski, versions of the Uniform Boundedness Principle and the Banach-Steinhaus Theorem are given which, in contrast to the usual versions, require no completeness or barrelledness assumptions on the domain space. Versions of Nikodym Boundedness and Convergence Theorems of measure theory, the Orlicz-Pettis Theorem on subseries convergence, generalizations of the Schur Lemma on the equivalence of weak and norm convergence in l1 and the Mazur-Orlicz Theorem on the continuity of separately continuous bilinear mappings are also given. Finally, the matrix theorems are also employed to treat a number of topics in sequence spaces | ||
650 | 4 | |a Functional analysis | |
650 | 4 | |a Measure theory | |
650 | 4 | |a Infinite matrices | |
650 | 0 | 7 | |a Unendliche Matrix |0 (DE-588)4285607-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unendliche Matrix |0 (DE-588)4285607-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810227364 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810227361 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3167#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034738 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3167#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178051474391040 |
---|---|
any_adam_object | |
author | Swartz, Charles 1938- |
author_GND | (DE-588)131653601 |
author_facet | Swartz, Charles 1938- |
author_role | aut |
author_sort | Swartz, Charles 1938- |
author_variant | c s cs |
building | Verbundindex |
bvnumber | BV044636765 |
classification_rvk | SK 220 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004887 (OCoLC)1012623506 (DE-599)BVBBV044636765 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02784nmm a2200457zc 4500</leader><controlfield tag="001">BV044636765</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180222 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812830036</subfield><subfield code="9">978-981-283-003-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3167</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004887</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012623506</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swartz, Charles</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131653601</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite matrices and the gliding hump</subfield><subfield code="c">C. Swartz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 209 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These notes present a theorem on infinite matrices with values in a topological group due to P. Antosik and J. Mikusinski. Using the matrix theorem and classical gliding hump techniques, a number of applications to various topics in functional analysis, measure theory and sequence spaces are given. There are a number of generalizations of the classical Uniform Boundedness Principle given; in particular, using stronger notions of sequential convergence and boundedness due to Antosik and Mikusinski, versions of the Uniform Boundedness Principle and the Banach-Steinhaus Theorem are given which, in contrast to the usual versions, require no completeness or barrelledness assumptions on the domain space. Versions of Nikodym Boundedness and Convergence Theorems of measure theory, the Orlicz-Pettis Theorem on subseries convergence, generalizations of the Schur Lemma on the equivalence of weak and norm convergence in l1 and the Mazur-Orlicz Theorem on the continuity of separately continuous bilinear mappings are also given. Finally, the matrix theorems are also employed to treat a number of topics in sequence spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite matrices</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendliche Matrix</subfield><subfield code="0">(DE-588)4285607-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unendliche Matrix</subfield><subfield code="0">(DE-588)4285607-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810227364</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810227361</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3167#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034738</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3167#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636765 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812830036 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034738 |
oclc_num | 1012623506 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xi, 209 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Swartz, Charles 1938- Verfasser (DE-588)131653601 aut Infinite matrices and the gliding hump C. Swartz Singapore World Scientific Pub. Co. c1996 xi, 209 p txt rdacontent c rdamedia cr rdacarrier These notes present a theorem on infinite matrices with values in a topological group due to P. Antosik and J. Mikusinski. Using the matrix theorem and classical gliding hump techniques, a number of applications to various topics in functional analysis, measure theory and sequence spaces are given. There are a number of generalizations of the classical Uniform Boundedness Principle given; in particular, using stronger notions of sequential convergence and boundedness due to Antosik and Mikusinski, versions of the Uniform Boundedness Principle and the Banach-Steinhaus Theorem are given which, in contrast to the usual versions, require no completeness or barrelledness assumptions on the domain space. Versions of Nikodym Boundedness and Convergence Theorems of measure theory, the Orlicz-Pettis Theorem on subseries convergence, generalizations of the Schur Lemma on the equivalence of weak and norm convergence in l1 and the Mazur-Orlicz Theorem on the continuity of separately continuous bilinear mappings are also given. Finally, the matrix theorems are also employed to treat a number of topics in sequence spaces Functional analysis Measure theory Infinite matrices Unendliche Matrix (DE-588)4285607-3 gnd rswk-swf Unendliche Matrix (DE-588)4285607-3 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810227364 Erscheint auch als Druck-Ausgabe 9810227361 http://www.worldscientific.com/worldscibooks/10.1142/3167#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Swartz, Charles 1938- Infinite matrices and the gliding hump Functional analysis Measure theory Infinite matrices Unendliche Matrix (DE-588)4285607-3 gnd |
subject_GND | (DE-588)4285607-3 |
title | Infinite matrices and the gliding hump |
title_auth | Infinite matrices and the gliding hump |
title_exact_search | Infinite matrices and the gliding hump |
title_full | Infinite matrices and the gliding hump C. Swartz |
title_fullStr | Infinite matrices and the gliding hump C. Swartz |
title_full_unstemmed | Infinite matrices and the gliding hump C. Swartz |
title_short | Infinite matrices and the gliding hump |
title_sort | infinite matrices and the gliding hump |
topic | Functional analysis Measure theory Infinite matrices Unendliche Matrix (DE-588)4285607-3 gnd |
topic_facet | Functional analysis Measure theory Infinite matrices Unendliche Matrix |
url | http://www.worldscientific.com/worldscibooks/10.1142/3167#t=toc |
work_keys_str_mv | AT swartzcharles infinitematricesandtheglidinghump |