Analogue imprecision in MLP training:
Hardware inaccuracy and imprecision are important considerations when implementing neural algorithms. This book presents a study of synaptic weight noise as a typical fault model for analogue VLSI realisations of MLP neural networks and examines the implications for learning and network performance....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1996
|
Schriftenreihe: | Progress in neural processing
4 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Hardware inaccuracy and imprecision are important considerations when implementing neural algorithms. This book presents a study of synaptic weight noise as a typical fault model for analogue VLSI realisations of MLP neural networks and examines the implications for learning and network performance. The aim of the book is to present a study of how including an imprecision model into a learning scheme as a "fault tolerance hint" can aid understanding of accuracy and precision requirements for a particular implementation. In addition the study shows how such a scheme can give rise to significant performance enhancement |
Beschreibung: | xi, 178 p. ill |
ISBN: | 9789812830012 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044636763 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789812830012 |9 978-981-283-001-2 | ||
024 | 7 | |a 10.1142/3170 |2 doi | |
035 | |a (ZDB-124-WOP)00004889 | ||
035 | |a (OCoLC)1012710099 | ||
035 | |a (DE-599)BVBBV044636763 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 006.32 |2 22 | |
100 | 1 | |a Edwards, Peter J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analogue imprecision in MLP training |c Peter J. Edwards, Alan F. Murray |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1996 | |
300 | |a xi, 178 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in neural processing |v 4 | |
520 | |a Hardware inaccuracy and imprecision are important considerations when implementing neural algorithms. This book presents a study of synaptic weight noise as a typical fault model for analogue VLSI realisations of MLP neural networks and examines the implications for learning and network performance. The aim of the book is to present a study of how including an imprecision model into a learning scheme as a "fault tolerance hint" can aid understanding of accuracy and precision requirements for a particular implementation. In addition the study shows how such a scheme can give rise to significant performance enhancement | ||
650 | 4 | |a Neural networks (Computer science) | |
650 | 4 | |a Perceptrons | |
700 | 1 | |a Murray, Alan F. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810227395 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810227396 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3170#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034736 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3170#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178051471245312 |
---|---|
any_adam_object | |
author | Edwards, Peter J. |
author_facet | Edwards, Peter J. |
author_role | aut |
author_sort | Edwards, Peter J. |
author_variant | p j e pj pje |
building | Verbundindex |
bvnumber | BV044636763 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004889 (OCoLC)1012710099 (DE-599)BVBBV044636763 |
dewey-full | 006.32 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.32 |
dewey-search | 006.32 |
dewey-sort | 16.32 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02079nmm a2200409zcb4500</leader><controlfield tag="001">BV044636763</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812830012</subfield><subfield code="9">978-981-283-001-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3170</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004889</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012710099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636763</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.32</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edwards, Peter J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analogue imprecision in MLP training</subfield><subfield code="c">Peter J. Edwards, Alan F. Murray</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 178 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in neural processing</subfield><subfield code="v">4</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hardware inaccuracy and imprecision are important considerations when implementing neural algorithms. This book presents a study of synaptic weight noise as a typical fault model for analogue VLSI realisations of MLP neural networks and examines the implications for learning and network performance. The aim of the book is to present a study of how including an imprecision model into a learning scheme as a "fault tolerance hint" can aid understanding of accuracy and precision requirements for a particular implementation. In addition the study shows how such a scheme can give rise to significant performance enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perceptrons</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murray, Alan F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810227395</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810227396</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3170#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034736</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3170#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636763 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812830012 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034736 |
oclc_num | 1012710099 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xi, 178 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Progress in neural processing |
spelling | Edwards, Peter J. Verfasser aut Analogue imprecision in MLP training Peter J. Edwards, Alan F. Murray Singapore World Scientific Pub. Co. c1996 xi, 178 p. ill txt rdacontent c rdamedia cr rdacarrier Progress in neural processing 4 Hardware inaccuracy and imprecision are important considerations when implementing neural algorithms. This book presents a study of synaptic weight noise as a typical fault model for analogue VLSI realisations of MLP neural networks and examines the implications for learning and network performance. The aim of the book is to present a study of how including an imprecision model into a learning scheme as a "fault tolerance hint" can aid understanding of accuracy and precision requirements for a particular implementation. In addition the study shows how such a scheme can give rise to significant performance enhancement Neural networks (Computer science) Perceptrons Murray, Alan F. Sonstige oth Erscheint auch als Druck-Ausgabe 9789810227395 Erscheint auch als Druck-Ausgabe 9810227396 http://www.worldscientific.com/worldscibooks/10.1142/3170#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Edwards, Peter J. Analogue imprecision in MLP training Neural networks (Computer science) Perceptrons |
title | Analogue imprecision in MLP training |
title_auth | Analogue imprecision in MLP training |
title_exact_search | Analogue imprecision in MLP training |
title_full | Analogue imprecision in MLP training Peter J. Edwards, Alan F. Murray |
title_fullStr | Analogue imprecision in MLP training Peter J. Edwards, Alan F. Murray |
title_full_unstemmed | Analogue imprecision in MLP training Peter J. Edwards, Alan F. Murray |
title_short | Analogue imprecision in MLP training |
title_sort | analogue imprecision in mlp training |
topic | Neural networks (Computer science) Perceptrons |
topic_facet | Neural networks (Computer science) Perceptrons |
url | http://www.worldscientific.com/worldscibooks/10.1142/3170#t=toc |
work_keys_str_mv | AT edwardspeterj analogueimprecisioninmlptraining AT murrayalanf analogueimprecisioninmlptraining |