Riemannian manifolds of conullity two:
This book deals with Riemannian manifolds for which the nullity space of the curvature tensor has codimension two. These manifolds are "semi-symmetric spaces foliated by Euclidean leaves of codimension two" in the sense of Z. I. Szabo. The authors concentrate on the rich geometrical struct...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1996
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book deals with Riemannian manifolds for which the nullity space of the curvature tensor has codimension two. These manifolds are "semi-symmetric spaces foliated by Euclidean leaves of codimension two" in the sense of Z. I. Szabo. The authors concentrate on the rich geometrical structure and explicit descriptions of these remarkable spaces. Also parallel theories are developed for manifolds of "relative conullity two". This makes a bridge to a survey on curvature homogeneous spaces introduced by I. M. Singer. As an application of the main topic, interesting hypersurfaces with type number two in Euclidean space are discovered, namely those which are locally rigid or "almost rigid". The unifying method is solving explicitly particular systems of nonlinear PDE. |
Beschreibung: | xvii, 300 p |
ISBN: | 9789812819970 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636759 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789812819970 |9 978-981-281-997-0 | ||
024 | 7 | |a 10.1142/3198 |2 doi | |
035 | |a (ZDB-124-WOP)00004897 | ||
035 | |a (OCoLC)1012651611 | ||
035 | |a (DE-599)BVBBV044636759 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.373 |2 22 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Boeckx, Eric |e Verfasser |4 aut | |
245 | 1 | 0 | |a Riemannian manifolds of conullity two |c Eric Boeckx, Oldrich Kowalski, Lieven Vanhecke |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1996 | |
300 | |a xvii, 300 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book deals with Riemannian manifolds for which the nullity space of the curvature tensor has codimension two. These manifolds are "semi-symmetric spaces foliated by Euclidean leaves of codimension two" in the sense of Z. I. Szabo. The authors concentrate on the rich geometrical structure and explicit descriptions of these remarkable spaces. Also parallel theories are developed for manifolds of "relative conullity two". This makes a bridge to a survey on curvature homogeneous spaces introduced by I. M. Singer. As an application of the main topic, interesting hypersurfaces with type number two in Euclidean space are discovered, namely those which are locally rigid or "almost rigid". The unifying method is solving explicitly particular systems of nonlinear PDE. | ||
650 | 4 | |a Riemannian manifolds | |
650 | 4 | |a Symmetric spaces | |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrischer Raum |0 (DE-588)4184206-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Symmetrischer Raum |0 (DE-588)4184206-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Kowalski, Oldrich |d 1936- |e Sonstige |4 oth | |
700 | 1 | |a Vanhecker, Lieven |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810227685 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 981022768X |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3198#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034732 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3198#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178051452370944 |
---|---|
any_adam_object | |
author | Boeckx, Eric |
author_facet | Boeckx, Eric |
author_role | aut |
author_sort | Boeckx, Eric |
author_variant | e b eb |
building | Verbundindex |
bvnumber | BV044636759 |
classification_rvk | SK 350 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004897 (OCoLC)1012651611 (DE-599)BVBBV044636759 |
dewey-full | 516.373 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.373 |
dewey-search | 516.373 |
dewey-sort | 3516.373 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02758nmm a2200517zc 4500</leader><controlfield tag="001">BV044636759</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812819970</subfield><subfield code="9">978-981-281-997-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3198</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012651611</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636759</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.373</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boeckx, Eric</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian manifolds of conullity two</subfield><subfield code="c">Eric Boeckx, Oldrich Kowalski, Lieven Vanhecke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 300 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book deals with Riemannian manifolds for which the nullity space of the curvature tensor has codimension two. These manifolds are "semi-symmetric spaces foliated by Euclidean leaves of codimension two" in the sense of Z. I. Szabo. The authors concentrate on the rich geometrical structure and explicit descriptions of these remarkable spaces. Also parallel theories are developed for manifolds of "relative conullity two". This makes a bridge to a survey on curvature homogeneous spaces introduced by I. M. Singer. As an application of the main topic, interesting hypersurfaces with type number two in Euclidean space are discovered, namely those which are locally rigid or "almost rigid". The unifying method is solving explicitly particular systems of nonlinear PDE.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrischer Raum</subfield><subfield code="0">(DE-588)4184206-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Symmetrischer Raum</subfield><subfield code="0">(DE-588)4184206-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kowalski, Oldrich</subfield><subfield code="d">1936-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vanhecker, Lieven</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810227685</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">981022768X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3198#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034732</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3198#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636759 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812819970 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034732 |
oclc_num | 1012651611 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xvii, 300 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Boeckx, Eric Verfasser aut Riemannian manifolds of conullity two Eric Boeckx, Oldrich Kowalski, Lieven Vanhecke Singapore World Scientific Pub. Co. c1996 xvii, 300 p txt rdacontent c rdamedia cr rdacarrier This book deals with Riemannian manifolds for which the nullity space of the curvature tensor has codimension two. These manifolds are "semi-symmetric spaces foliated by Euclidean leaves of codimension two" in the sense of Z. I. Szabo. The authors concentrate on the rich geometrical structure and explicit descriptions of these remarkable spaces. Also parallel theories are developed for manifolds of "relative conullity two". This makes a bridge to a survey on curvature homogeneous spaces introduced by I. M. Singer. As an application of the main topic, interesting hypersurfaces with type number two in Euclidean space are discovered, namely those which are locally rigid or "almost rigid". The unifying method is solving explicitly particular systems of nonlinear PDE. Riemannian manifolds Symmetric spaces Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Symmetrischer Raum (DE-588)4184206-6 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 s 1\p DE-604 Symmetrischer Raum (DE-588)4184206-6 s 2\p DE-604 Kowalski, Oldrich 1936- Sonstige oth Vanhecker, Lieven Sonstige oth Erscheint auch als Druck-Ausgabe 9789810227685 Erscheint auch als Druck-Ausgabe 981022768X http://www.worldscientific.com/worldscibooks/10.1142/3198#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Boeckx, Eric Riemannian manifolds of conullity two Riemannian manifolds Symmetric spaces Riemannscher Raum (DE-588)4128295-4 gnd Symmetrischer Raum (DE-588)4184206-6 gnd |
subject_GND | (DE-588)4128295-4 (DE-588)4184206-6 |
title | Riemannian manifolds of conullity two |
title_auth | Riemannian manifolds of conullity two |
title_exact_search | Riemannian manifolds of conullity two |
title_full | Riemannian manifolds of conullity two Eric Boeckx, Oldrich Kowalski, Lieven Vanhecke |
title_fullStr | Riemannian manifolds of conullity two Eric Boeckx, Oldrich Kowalski, Lieven Vanhecke |
title_full_unstemmed | Riemannian manifolds of conullity two Eric Boeckx, Oldrich Kowalski, Lieven Vanhecke |
title_short | Riemannian manifolds of conullity two |
title_sort | riemannian manifolds of conullity two |
topic | Riemannian manifolds Symmetric spaces Riemannscher Raum (DE-588)4128295-4 gnd Symmetrischer Raum (DE-588)4184206-6 gnd |
topic_facet | Riemannian manifolds Symmetric spaces Riemannscher Raum Symmetrischer Raum |
url | http://www.worldscientific.com/worldscibooks/10.1142/3198#t=toc |
work_keys_str_mv | AT boeckxeric riemannianmanifoldsofconullitytwo AT kowalskioldrich riemannianmanifoldsofconullitytwo AT vanheckerlieven riemannianmanifoldsofconullitytwo |