Wavelets and renormalization:
Wavelets And Renormalization describes the role played by wavelets in Euclidean field theory and classical statistical mechanics. The author begins with a stream-lined introduction to quantum field theory from a rather basic point of view. Functional integrals for imaginary-time-ordered expectations...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1999
|
Schriftenreihe: | Series in approximations and decompositions
v. 10 |
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | Wavelets And Renormalization describes the role played by wavelets in Euclidean field theory and classical statistical mechanics. The author begins with a stream-lined introduction to quantum field theory from a rather basic point of view. Functional integrals for imaginary-time-ordered expectations are introduced early and naturally, while the connection with the statistical mechanics of classical spin systems is introduced in a later chapter. A vastly simplified (wavelet) version of the celebrated Glimm-Jaffe construction of the [symbol] quantum field theory is presented. It is due to Battle and Federbush, and it bases an inductively defined cluster expansion on a wavelet decomposition of the Euclidean quantum field. The presentation is reserved for the last chapter, while the more basic aspects of cluster expansions are reviewed in the chapter on classical spin systems. Wavelets themselves are studied from two different points of view arising from two disciplines. The mathematical point of view covers the basic properties of wavelets and methods for constructing well-known wavelets such as Meyer wavelets, Daubechies wavelets, etc. The physical point of view covers the renormalization group formalism, where there is a close connection between wavelets and Gaussian fixed points. The book is heavily mathematical, but avoids the theorem-proof format in the interests of preserving the flow of the discussion - i.e., it is written in the style of an old-fashioned theoretical physics book, but the major claims are rigorously proven. The minor themes of the book are reflection positivity, the combinatorics of cluster expansions, and the issue of phase transitions - themes which have nothing to do with wavelets, but which provide necessary cultural background for the physical context |
Beschreibung: | xiv, 561 p. ill |
ISBN: | 9789812817396 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044636631 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789812817396 |c electronic bk. |9 978-981-281-739-6 | ||
024 | 7 | |a 10.1142/3066 |2 doi | |
035 | |a (ZDB-124-WOP)00003174 | ||
035 | |a (OCoLC)1012698478 | ||
035 | |a (DE-599)BVBBV044636631 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.143 |2 22 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UO 4020 |0 (DE-625)146239: |2 rvk | ||
100 | 1 | |a Battle, Guy |d 1962- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Wavelets and renormalization |c G. Battle |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1999 | |
300 | |a xiv, 561 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in approximations and decompositions |v v. 10 | |
520 | |a Wavelets And Renormalization describes the role played by wavelets in Euclidean field theory and classical statistical mechanics. The author begins with a stream-lined introduction to quantum field theory from a rather basic point of view. Functional integrals for imaginary-time-ordered expectations are introduced early and naturally, while the connection with the statistical mechanics of classical spin systems is introduced in a later chapter. A vastly simplified (wavelet) version of the celebrated Glimm-Jaffe construction of the [symbol] quantum field theory is presented. It is due to Battle and Federbush, and it bases an inductively defined cluster expansion on a wavelet decomposition of the Euclidean quantum field. The presentation is reserved for the last chapter, while the more basic aspects of cluster expansions are reviewed in the chapter on classical spin systems. Wavelets themselves are studied from two different points of view arising from two disciplines. The mathematical point of view covers the basic properties of wavelets and methods for constructing well-known wavelets such as Meyer wavelets, Daubechies wavelets, etc. The physical point of view covers the renormalization group formalism, where there is a close connection between wavelets and Gaussian fixed points. The book is heavily mathematical, but avoids the theorem-proof format in the interests of preserving the flow of the discussion - i.e., it is written in the style of an old-fashioned theoretical physics book, but the major claims are rigorously proven. The minor themes of the book are reflection positivity, the combinatorics of cluster expansions, and the issue of phase transitions - themes which have nothing to do with wavelets, but which provide necessary cultural background for the physical context | ||
650 | 4 | |a Renormalization group | |
650 | 4 | |a Wavelets (Mathematics) | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Renormierung |0 (DE-588)4128419-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 0 | 1 | |a Renormierung |0 (DE-588)4128419-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810226244 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810226241 (alk. paper) |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3066#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034604 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3066#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178051198615552 |
---|---|
any_adam_object | |
author | Battle, Guy 1962- |
author_facet | Battle, Guy 1962- |
author_role | aut |
author_sort | Battle, Guy 1962- |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV044636631 |
classification_rvk | SK 450 SK 950 UO 4020 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003174 (OCoLC)1012698478 (DE-599)BVBBV044636631 |
dewey-full | 530.143 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.143 |
dewey-search | 530.143 |
dewey-sort | 3530.143 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03737nmm a2200517zcb4500</leader><controlfield tag="001">BV044636631</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812817396</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-739-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3066</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012698478</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636631</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.143</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4020</subfield><subfield code="0">(DE-625)146239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Battle, Guy</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wavelets and renormalization</subfield><subfield code="c">G. Battle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 561 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in approximations and decompositions</subfield><subfield code="v">v. 10</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wavelets And Renormalization describes the role played by wavelets in Euclidean field theory and classical statistical mechanics. The author begins with a stream-lined introduction to quantum field theory from a rather basic point of view. Functional integrals for imaginary-time-ordered expectations are introduced early and naturally, while the connection with the statistical mechanics of classical spin systems is introduced in a later chapter. A vastly simplified (wavelet) version of the celebrated Glimm-Jaffe construction of the [symbol] quantum field theory is presented. It is due to Battle and Federbush, and it bases an inductively defined cluster expansion on a wavelet decomposition of the Euclidean quantum field. The presentation is reserved for the last chapter, while the more basic aspects of cluster expansions are reviewed in the chapter on classical spin systems. Wavelets themselves are studied from two different points of view arising from two disciplines. The mathematical point of view covers the basic properties of wavelets and methods for constructing well-known wavelets such as Meyer wavelets, Daubechies wavelets, etc. The physical point of view covers the renormalization group formalism, where there is a close connection between wavelets and Gaussian fixed points. The book is heavily mathematical, but avoids the theorem-proof format in the interests of preserving the flow of the discussion - i.e., it is written in the style of an old-fashioned theoretical physics book, but the major claims are rigorously proven. The minor themes of the book are reflection positivity, the combinatorics of cluster expansions, and the issue of phase transitions - themes which have nothing to do with wavelets, but which provide necessary cultural background for the physical context</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renormalization group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelets (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Renormierung</subfield><subfield code="0">(DE-588)4128419-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Renormierung</subfield><subfield code="0">(DE-588)4128419-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810226244</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810226241 (alk. paper)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3066#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034604</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3066#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636631 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812817396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034604 |
oclc_num | 1012698478 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 561 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series in approximations and decompositions |
spelling | Battle, Guy 1962- Verfasser aut Wavelets and renormalization G. Battle Singapore World Scientific Pub. Co. c1999 xiv, 561 p. ill txt rdacontent c rdamedia cr rdacarrier Series in approximations and decompositions v. 10 Wavelets And Renormalization describes the role played by wavelets in Euclidean field theory and classical statistical mechanics. The author begins with a stream-lined introduction to quantum field theory from a rather basic point of view. Functional integrals for imaginary-time-ordered expectations are introduced early and naturally, while the connection with the statistical mechanics of classical spin systems is introduced in a later chapter. A vastly simplified (wavelet) version of the celebrated Glimm-Jaffe construction of the [symbol] quantum field theory is presented. It is due to Battle and Federbush, and it bases an inductively defined cluster expansion on a wavelet decomposition of the Euclidean quantum field. The presentation is reserved for the last chapter, while the more basic aspects of cluster expansions are reviewed in the chapter on classical spin systems. Wavelets themselves are studied from two different points of view arising from two disciplines. The mathematical point of view covers the basic properties of wavelets and methods for constructing well-known wavelets such as Meyer wavelets, Daubechies wavelets, etc. The physical point of view covers the renormalization group formalism, where there is a close connection between wavelets and Gaussian fixed points. The book is heavily mathematical, but avoids the theorem-proof format in the interests of preserving the flow of the discussion - i.e., it is written in the style of an old-fashioned theoretical physics book, but the major claims are rigorously proven. The minor themes of the book are reflection positivity, the combinatorics of cluster expansions, and the issue of phase transitions - themes which have nothing to do with wavelets, but which provide necessary cultural background for the physical context Renormalization group Wavelets (Mathematics) Mathematical physics Wavelet (DE-588)4215427-3 gnd rswk-swf Renormierung (DE-588)4128419-7 gnd rswk-swf Wavelet (DE-588)4215427-3 s Renormierung (DE-588)4128419-7 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810226244 Erscheint auch als Druck-Ausgabe 9810226241 (alk. paper) http://www.worldscientific.com/worldscibooks/10.1142/3066#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Battle, Guy 1962- Wavelets and renormalization Renormalization group Wavelets (Mathematics) Mathematical physics Wavelet (DE-588)4215427-3 gnd Renormierung (DE-588)4128419-7 gnd |
subject_GND | (DE-588)4215427-3 (DE-588)4128419-7 |
title | Wavelets and renormalization |
title_auth | Wavelets and renormalization |
title_exact_search | Wavelets and renormalization |
title_full | Wavelets and renormalization G. Battle |
title_fullStr | Wavelets and renormalization G. Battle |
title_full_unstemmed | Wavelets and renormalization G. Battle |
title_short | Wavelets and renormalization |
title_sort | wavelets and renormalization |
topic | Renormalization group Wavelets (Mathematics) Mathematical physics Wavelet (DE-588)4215427-3 gnd Renormierung (DE-588)4128419-7 gnd |
topic_facet | Renormalization group Wavelets (Mathematics) Mathematical physics Wavelet Renormierung |
url | http://www.worldscientific.com/worldscibooks/10.1142/3066#t=toc |
work_keys_str_mv | AT battleguy waveletsandrenormalization |