Geometric methods in the elastic theory of membranes in liquid crystal phases:
This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic — A liquid crystal film and its elastic energy form...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1999
|
Schriftenreihe: | Advanced series on theoretical physical science
v. 2 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic — A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations of the rigorous solution of the equation that have been carried out in recent years by the authors and their co-workers are presented here, among which the torus and the discocyte (the normal shape of the human red blood cell) may attract attention in cell biology. Within the framework of our mathematical model by analogy with cholesteric liquid crystals, an extensive investigation is made of the formation of the helical structures in a tilted chiral lipid bilayer, which has now become a hot topic in the fields of soft matter and biomembranes |
Beschreibung: | x, 234 p. ill |
ISBN: | 9789812816856 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044636584 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789812816856 |9 978-981-281-685-6 | ||
024 | 7 | |a 10.1142/3579 |2 doi | |
035 | |a (ZDB-124-WOP)00004577 | ||
035 | |a (OCoLC)1012673288 | ||
035 | |a (DE-599)BVBBV044636584 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.429 |2 22 | |
084 | |a UQ 8700 |0 (DE-625)146602: |2 rvk | ||
100 | 1 | |a Ou-Yang, Zhong-Can |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric methods in the elastic theory of membranes in liquid crystal phases |c Ou-Yang Zhong-Can & Liu Ji-Xing, Xie Yu-Zhang |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1999 | |
300 | |a x, 234 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced series on theoretical physical science |v v. 2 | |
520 | |a This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic — A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations of the rigorous solution of the equation that have been carried out in recent years by the authors and their co-workers are presented here, among which the torus and the discocyte (the normal shape of the human red blood cell) may attract attention in cell biology. Within the framework of our mathematical model by analogy with cholesteric liquid crystals, an extensive investigation is made of the formation of the helical structures in a tilted chiral lipid bilayer, which has now become a hot topic in the fields of soft matter and biomembranes | ||
650 | 4 | |a Liquid crystal films | |
650 | 4 | |a Polymer liquid crystals | |
650 | 4 | |a Polymer liquid crystals | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810232481 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810232489 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3579#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034557 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3579#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178051090612224 |
---|---|
any_adam_object | |
author | Ou-Yang, Zhong-Can |
author_facet | Ou-Yang, Zhong-Can |
author_role | aut |
author_sort | Ou-Yang, Zhong-Can |
author_variant | z c o y zcoy |
building | Verbundindex |
bvnumber | BV044636584 |
classification_rvk | UQ 8700 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004577 (OCoLC)1012673288 (DE-599)BVBBV044636584 |
dewey-full | 530.429 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.429 |
dewey-search | 530.429 |
dewey-sort | 3530.429 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02718nmm a2200421zcb4500</leader><controlfield tag="001">BV044636584</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812816856</subfield><subfield code="9">978-981-281-685-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3579</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012673288</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636584</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.429</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8700</subfield><subfield code="0">(DE-625)146602:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ou-Yang, Zhong-Can</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric methods in the elastic theory of membranes in liquid crystal phases</subfield><subfield code="c">Ou-Yang Zhong-Can & Liu Ji-Xing, Xie Yu-Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 234 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced series on theoretical physical science</subfield><subfield code="v">v. 2</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic — A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations of the rigorous solution of the equation that have been carried out in recent years by the authors and their co-workers are presented here, among which the torus and the discocyte (the normal shape of the human red blood cell) may attract attention in cell biology. Within the framework of our mathematical model by analogy with cholesteric liquid crystals, an extensive investigation is made of the formation of the helical structures in a tilted chiral lipid bilayer, which has now become a hot topic in the fields of soft matter and biomembranes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid crystal films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymer liquid crystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymer liquid crystals</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810232481</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810232489</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3579#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034557</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3579#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636584 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812816856 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034557 |
oclc_num | 1012673288 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 234 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Advanced series on theoretical physical science |
spelling | Ou-Yang, Zhong-Can Verfasser aut Geometric methods in the elastic theory of membranes in liquid crystal phases Ou-Yang Zhong-Can & Liu Ji-Xing, Xie Yu-Zhang Singapore World Scientific Pub. Co. c1999 x, 234 p. ill txt rdacontent c rdamedia cr rdacarrier Advanced series on theoretical physical science v. 2 This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic — A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations of the rigorous solution of the equation that have been carried out in recent years by the authors and their co-workers are presented here, among which the torus and the discocyte (the normal shape of the human red blood cell) may attract attention in cell biology. Within the framework of our mathematical model by analogy with cholesteric liquid crystals, an extensive investigation is made of the formation of the helical structures in a tilted chiral lipid bilayer, which has now become a hot topic in the fields of soft matter and biomembranes Liquid crystal films Polymer liquid crystals Erscheint auch als Druck-Ausgabe 9789810232481 Erscheint auch als Druck-Ausgabe 9810232489 http://www.worldscientific.com/worldscibooks/10.1142/3579#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Ou-Yang, Zhong-Can Geometric methods in the elastic theory of membranes in liquid crystal phases Liquid crystal films Polymer liquid crystals |
title | Geometric methods in the elastic theory of membranes in liquid crystal phases |
title_auth | Geometric methods in the elastic theory of membranes in liquid crystal phases |
title_exact_search | Geometric methods in the elastic theory of membranes in liquid crystal phases |
title_full | Geometric methods in the elastic theory of membranes in liquid crystal phases Ou-Yang Zhong-Can & Liu Ji-Xing, Xie Yu-Zhang |
title_fullStr | Geometric methods in the elastic theory of membranes in liquid crystal phases Ou-Yang Zhong-Can & Liu Ji-Xing, Xie Yu-Zhang |
title_full_unstemmed | Geometric methods in the elastic theory of membranes in liquid crystal phases Ou-Yang Zhong-Can & Liu Ji-Xing, Xie Yu-Zhang |
title_short | Geometric methods in the elastic theory of membranes in liquid crystal phases |
title_sort | geometric methods in the elastic theory of membranes in liquid crystal phases |
topic | Liquid crystal films Polymer liquid crystals |
topic_facet | Liquid crystal films Polymer liquid crystals |
url | http://www.worldscientific.com/worldscibooks/10.1142/3579#t=toc |
work_keys_str_mv | AT ouyangzhongcan geometricmethodsintheelastictheoryofmembranesinliquidcrystalphases |