Fourier series in orthogonal polynomials:
"This book presents a systematic course on general orthogonal polynomials and Fourier series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1999
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | "This book presents a systematic course on general orthogonal polynomials and Fourier series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis. Chapter 2 contains the classical results about the orthogonal polynomials (some properties, classical Jacobi polynomials and the criteria of boundedness).The main subject of the book is Fourier series in general orthogonal polynomials. Chapters 3 and 4 are devoted to some results in this topic (classical results about convergence and summability of Fourier series in L2μ; summability almost everywhere by the Cesaro means and the Poisson–Abel method for Fourier polynomial series are the subject of Chapters 4 and 5).The last chapter contains some estimates regarding the generalized shift operator and the generalized product formula, associated with general orthogonal polynomials.The starting point of the technique in Chapters 4 and 5 is the representations of bilinear and trilinear forms obtained by the author. The results obtained in these two chapters are new ones.Chapters 2 and 3 (and part of Chapter 1) will be useful to postgraduate students, and one can choose them for treatment.This book is intended for researchers (mathematicians, mechanicians and physicists) whose work involves function theory, functional analysis, harmonic analysis and approximation theory." |
Beschreibung: | vi, 287 p |
ISBN: | 9789812815620 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636494 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789812815620 |9 978-981-281-562-0 | ||
024 | 7 | |a 10.1142/4039 |2 doi | |
035 | |a (ZDB-124-WOP)00004701 | ||
035 | |a (OCoLC)1012713111 | ||
035 | |a (DE-599)BVBBV044636494 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.55 |2 22 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Osilenker, Boris |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fourier series in orthogonal polynomials |c Boris Osilenker |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1999 | |
300 | |a vi, 287 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a "This book presents a systematic course on general orthogonal polynomials and Fourier series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis. Chapter 2 contains the classical results about the orthogonal polynomials (some properties, classical Jacobi polynomials and the criteria of boundedness).The main subject of the book is Fourier series in general orthogonal polynomials. Chapters 3 and 4 are devoted to some results in this topic (classical results about convergence and summability of Fourier series in L2μ; summability almost everywhere by the Cesaro means and the Poisson–Abel method for Fourier polynomial series are the subject of Chapters 4 and 5).The last chapter contains some estimates regarding the generalized shift operator and the generalized product formula, associated with general orthogonal polynomials.The starting point of the technique in Chapters 4 and 5 is the representations of bilinear and trilinear forms obtained by the author. The results obtained in these two chapters are new ones.Chapters 2 and 3 (and part of Chapter 1) will be useful to postgraduate students, and one can choose them for treatment.This book is intended for researchers (mathematicians, mechanicians and physicists) whose work involves function theory, functional analysis, harmonic analysis and approximation theory." | ||
650 | 4 | |a Orthogonal polynomials | |
650 | 4 | |a Fourier series | |
650 | 0 | 7 | |a Fourier-Reihe |0 (DE-588)4155109-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fourier-Reihe |0 (DE-588)4155109-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810237875 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 981-02-3787-1 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4039#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034466 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4039#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050914451456 |
---|---|
any_adam_object | |
author | Osilenker, Boris |
author_facet | Osilenker, Boris |
author_role | aut |
author_sort | Osilenker, Boris |
author_variant | b o bo |
building | Verbundindex |
bvnumber | BV044636494 |
classification_rvk | SK 450 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004701 (OCoLC)1012713111 (DE-599)BVBBV044636494 |
dewey-full | 515.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.55 |
dewey-search | 515.55 |
dewey-sort | 3515.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03088nmm a2200445zc 4500</leader><controlfield tag="001">BV044636494</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812815620</subfield><subfield code="9">978-981-281-562-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4039</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012713111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636494</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Osilenker, Boris</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fourier series in orthogonal polynomials</subfield><subfield code="c">Boris Osilenker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vi, 287 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book presents a systematic course on general orthogonal polynomials and Fourier series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis. Chapter 2 contains the classical results about the orthogonal polynomials (some properties, classical Jacobi polynomials and the criteria of boundedness).The main subject of the book is Fourier series in general orthogonal polynomials. Chapters 3 and 4 are devoted to some results in this topic (classical results about convergence and summability of Fourier series in L2μ; summability almost everywhere by the Cesaro means and the Poisson–Abel method for Fourier polynomial series are the subject of Chapters 4 and 5).The last chapter contains some estimates regarding the generalized shift operator and the generalized product formula, associated with general orthogonal polynomials.The starting point of the technique in Chapters 4 and 5 is the representations of bilinear and trilinear forms obtained by the author. The results obtained in these two chapters are new ones.Chapters 2 and 3 (and part of Chapter 1) will be useful to postgraduate students, and one can choose them for treatment.This book is intended for researchers (mathematicians, mechanicians and physicists) whose work involves function theory, functional analysis, harmonic analysis and approximation theory."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810237875</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">981-02-3787-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4039#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034466</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4039#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636494 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812815620 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034466 |
oclc_num | 1012713111 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | vi, 287 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Osilenker, Boris Verfasser aut Fourier series in orthogonal polynomials Boris Osilenker Singapore World Scientific Pub. Co. c1999 vi, 287 p txt rdacontent c rdamedia cr rdacarrier "This book presents a systematic course on general orthogonal polynomials and Fourier series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis. Chapter 2 contains the classical results about the orthogonal polynomials (some properties, classical Jacobi polynomials and the criteria of boundedness).The main subject of the book is Fourier series in general orthogonal polynomials. Chapters 3 and 4 are devoted to some results in this topic (classical results about convergence and summability of Fourier series in L2μ; summability almost everywhere by the Cesaro means and the Poisson–Abel method for Fourier polynomial series are the subject of Chapters 4 and 5).The last chapter contains some estimates regarding the generalized shift operator and the generalized product formula, associated with general orthogonal polynomials.The starting point of the technique in Chapters 4 and 5 is the representations of bilinear and trilinear forms obtained by the author. The results obtained in these two chapters are new ones.Chapters 2 and 3 (and part of Chapter 1) will be useful to postgraduate students, and one can choose them for treatment.This book is intended for researchers (mathematicians, mechanicians and physicists) whose work involves function theory, functional analysis, harmonic analysis and approximation theory." Orthogonal polynomials Fourier series Fourier-Reihe (DE-588)4155109-6 gnd rswk-swf Fourier-Reihe (DE-588)4155109-6 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810237875 Erscheint auch als Druck-Ausgabe 981-02-3787-1 http://www.worldscientific.com/worldscibooks/10.1142/4039#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Osilenker, Boris Fourier series in orthogonal polynomials Orthogonal polynomials Fourier series Fourier-Reihe (DE-588)4155109-6 gnd |
subject_GND | (DE-588)4155109-6 |
title | Fourier series in orthogonal polynomials |
title_auth | Fourier series in orthogonal polynomials |
title_exact_search | Fourier series in orthogonal polynomials |
title_full | Fourier series in orthogonal polynomials Boris Osilenker |
title_fullStr | Fourier series in orthogonal polynomials Boris Osilenker |
title_full_unstemmed | Fourier series in orthogonal polynomials Boris Osilenker |
title_short | Fourier series in orthogonal polynomials |
title_sort | fourier series in orthogonal polynomials |
topic | Orthogonal polynomials Fourier series Fourier-Reihe (DE-588)4155109-6 gnd |
topic_facet | Orthogonal polynomials Fourier series Fourier-Reihe |
url | http://www.worldscientific.com/worldscibooks/10.1142/4039#t=toc |
work_keys_str_mv | AT osilenkerboris fourierseriesinorthogonalpolynomials |