The Kobayashi-Hitchin correspondence:
By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic - resp. MHE of irreducible Hermitian-Einstein - structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this r...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1995
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic - resp. MHE of irreducible Hermitian-Einstein - structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples. After discussing the stability concept on arbitrary compact complex manifolds in chapter 1, the authors consider, in chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) chapter 3. In chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VII0. In chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included |
Beschreibung: | viii, 254 p |
ISBN: | 9789812815439 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636480 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1995 |||| o||u| ||||||eng d | ||
020 | |a 9789812815439 |9 978-981-281-543-9 | ||
024 | 7 | |a 10.1142/2660 |2 doi | |
035 | |a (ZDB-124-WOP)00005192 | ||
035 | |a (OCoLC)1012640220 | ||
035 | |a (DE-599)BVBBV044636480 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.35 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Lubke, Martin |d 1954- |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Kobayashi-Hitchin correspondence |c Martin Lubke, Andrei Teleman |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1995 | |
300 | |a viii, 254 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic - resp. MHE of irreducible Hermitian-Einstein - structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples. After discussing the stability concept on arbitrary compact complex manifolds in chapter 1, the authors consider, in chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) chapter 3. In chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VII0. In chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included | ||
650 | 4 | |a Kobayashi-Hitchin correspondence (Algebraic geometry) | |
650 | 0 | 7 | |a Hermite-Einstein-Vektorraumbündel |0 (DE-588)4159609-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hermite-Einstein-Vektorraumbündel |0 (DE-588)4159609-2 |D s |
689 | 0 | 1 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 1 | 1 | |a Hermite-Einstein-Vektorraumbündel |0 (DE-588)4159609-2 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Teleman, Andrei |d 1962- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810221683 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810221681 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2660#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034451 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2660#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050891382784 |
---|---|
any_adam_object | |
author | Lubke, Martin 1954- |
author_facet | Lubke, Martin 1954- |
author_role | aut |
author_sort | Lubke, Martin 1954- |
author_variant | m l ml |
building | Verbundindex |
bvnumber | BV044636480 |
classification_rvk | SK 370 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005192 (OCoLC)1012640220 (DE-599)BVBBV044636480 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03864nmm a2200505zc 4500</leader><controlfield tag="001">BV044636480</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812815439</subfield><subfield code="9">978-981-281-543-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2660</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005192</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012640220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636480</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lubke, Martin</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Kobayashi-Hitchin correspondence</subfield><subfield code="c">Martin Lubke, Andrei Teleman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 254 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic - resp. MHE of irreducible Hermitian-Einstein - structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples. After discussing the stability concept on arbitrary compact complex manifolds in chapter 1, the authors consider, in chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) chapter 3. In chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VII0. In chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kobayashi-Hitchin correspondence (Algebraic geometry)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hermite-Einstein-Vektorraumbündel</subfield><subfield code="0">(DE-588)4159609-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hermite-Einstein-Vektorraumbündel</subfield><subfield code="0">(DE-588)4159609-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Hermite-Einstein-Vektorraumbündel</subfield><subfield code="0">(DE-588)4159609-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teleman, Andrei</subfield><subfield code="d">1962-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810221683</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810221681</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2660#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034451</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2660#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636480 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812815439 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034451 |
oclc_num | 1012640220 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | viii, 254 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Lubke, Martin 1954- Verfasser aut The Kobayashi-Hitchin correspondence Martin Lubke, Andrei Teleman Singapore World Scientific Pub. Co. c1995 viii, 254 p txt rdacontent c rdamedia cr rdacarrier By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic - resp. MHE of irreducible Hermitian-Einstein - structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples. After discussing the stability concept on arbitrary compact complex manifolds in chapter 1, the authors consider, in chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) chapter 3. In chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VII0. In chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included Kobayashi-Hitchin correspondence (Algebraic geometry) Hermite-Einstein-Vektorraumbündel (DE-588)4159609-2 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd rswk-swf Hermite-Einstein-Vektorraumbündel (DE-588)4159609-2 s Komplexe Mannigfaltigkeit (DE-588)4031996-9 s DE-604 Algebraische Geometrie (DE-588)4001161-6 s Teleman, Andrei 1962- Sonstige oth Erscheint auch als Druck-Ausgabe 9789810221683 Erscheint auch als Druck-Ausgabe 9810221681 http://www.worldscientific.com/worldscibooks/10.1142/2660#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Lubke, Martin 1954- The Kobayashi-Hitchin correspondence Kobayashi-Hitchin correspondence (Algebraic geometry) Hermite-Einstein-Vektorraumbündel (DE-588)4159609-2 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd |
subject_GND | (DE-588)4159609-2 (DE-588)4001161-6 (DE-588)4031996-9 |
title | The Kobayashi-Hitchin correspondence |
title_auth | The Kobayashi-Hitchin correspondence |
title_exact_search | The Kobayashi-Hitchin correspondence |
title_full | The Kobayashi-Hitchin correspondence Martin Lubke, Andrei Teleman |
title_fullStr | The Kobayashi-Hitchin correspondence Martin Lubke, Andrei Teleman |
title_full_unstemmed | The Kobayashi-Hitchin correspondence Martin Lubke, Andrei Teleman |
title_short | The Kobayashi-Hitchin correspondence |
title_sort | the kobayashi hitchin correspondence |
topic | Kobayashi-Hitchin correspondence (Algebraic geometry) Hermite-Einstein-Vektorraumbündel (DE-588)4159609-2 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd |
topic_facet | Kobayashi-Hitchin correspondence (Algebraic geometry) Hermite-Einstein-Vektorraumbündel Algebraische Geometrie Komplexe Mannigfaltigkeit |
url | http://www.worldscientific.com/worldscibooks/10.1142/2660#t=toc |
work_keys_str_mv | AT lubkemartin thekobayashihitchincorrespondence AT telemanandrei thekobayashihitchincorrespondence |