Lipschitz algebras:
The Lipschitz algebras Lip(M), for M a complete metric space, are quite analogous to the spaces C(Ω) and L∞(X), for Ω a compact Hausdorff space and X a σ-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasing...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1999
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | The Lipschitz algebras Lip(M), for M a complete metric space, are quite analogous to the spaces C(Ω) and L∞(X), for Ω a compact Hausdorff space and X a σ-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras |
Beschreibung: | xiii, 223 p. ill |
ISBN: | 9789812815255 9812815252 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636465 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789812815255 |9 978-981-281-525-5 | ||
020 | |a 9812815252 |9 981-281-525-2 | ||
024 | 7 | |a 10.1142/4100 |2 doi | |
035 | |a (ZDB-124-WOP)00004288 | ||
035 | |a (OCoLC)1012665930 | ||
035 | |a (DE-599)BVBBV044636465 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.73 |2 22 | |
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Weaver, Nik |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lipschitz algebras |c Nik Weaver |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1999 | |
300 | |a xiii, 223 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The Lipschitz algebras Lip(M), for M a complete metric space, are quite analogous to the spaces C(Ω) and L∞(X), for Ω a compact Hausdorff space and X a σ-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras | ||
650 | 4 | |a Lipschitz spaces | |
650 | 0 | 7 | |a Lipschitz-Raum |0 (DE-588)4431681-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lipschitz-Raum |0 (DE-588)4431681-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810238735 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810238738 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4100#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034437 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4100#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050830565376 |
---|---|
any_adam_object | |
author | Weaver, Nik |
author_facet | Weaver, Nik |
author_role | aut |
author_sort | Weaver, Nik |
author_variant | n w nw |
building | Verbundindex |
bvnumber | BV044636465 |
classification_rvk | SK 200 SK 600 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004288 (OCoLC)1012665930 (DE-599)BVBBV044636465 |
dewey-full | 515.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.73 |
dewey-search | 515.73 |
dewey-sort | 3515.73 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02210nmm a2200457zc 4500</leader><controlfield tag="001">BV044636465</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812815255</subfield><subfield code="9">978-981-281-525-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812815252</subfield><subfield code="9">981-281-525-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4100</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004288</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012665930</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636465</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.73</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weaver, Nik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lipschitz algebras</subfield><subfield code="c">Nik Weaver</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 223 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Lipschitz algebras Lip(M), for M a complete metric space, are quite analogous to the spaces C(Ω) and L∞(X), for Ω a compact Hausdorff space and X a σ-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipschitz spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lipschitz-Raum</subfield><subfield code="0">(DE-588)4431681-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lipschitz-Raum</subfield><subfield code="0">(DE-588)4431681-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810238735</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810238738</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4100#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034437</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4100#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636465 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812815255 9812815252 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034437 |
oclc_num | 1012665930 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiii, 223 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Weaver, Nik Verfasser aut Lipschitz algebras Nik Weaver Singapore World Scientific Pub. Co. c1999 xiii, 223 p. ill txt rdacontent c rdamedia cr rdacarrier The Lipschitz algebras Lip(M), for M a complete metric space, are quite analogous to the spaces C(Ω) and L∞(X), for Ω a compact Hausdorff space and X a σ-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras Lipschitz spaces Lipschitz-Raum (DE-588)4431681-1 gnd rswk-swf Lipschitz-Raum (DE-588)4431681-1 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810238735 Erscheint auch als Druck-Ausgabe 9810238738 http://www.worldscientific.com/worldscibooks/10.1142/4100#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Weaver, Nik Lipschitz algebras Lipschitz spaces Lipschitz-Raum (DE-588)4431681-1 gnd |
subject_GND | (DE-588)4431681-1 |
title | Lipschitz algebras |
title_auth | Lipschitz algebras |
title_exact_search | Lipschitz algebras |
title_full | Lipschitz algebras Nik Weaver |
title_fullStr | Lipschitz algebras Nik Weaver |
title_full_unstemmed | Lipschitz algebras Nik Weaver |
title_short | Lipschitz algebras |
title_sort | lipschitz algebras |
topic | Lipschitz spaces Lipschitz-Raum (DE-588)4431681-1 gnd |
topic_facet | Lipschitz spaces Lipschitz-Raum |
url | http://www.worldscientific.com/worldscibooks/10.1142/4100#t=toc |
work_keys_str_mv | AT weavernik lipschitzalgebras |