Weak convergence methods for semilinear elliptic equations:
This book deals with nonlinear boundary value problems for semilinear elliptic equations on unbounded domains with nonlinearities involving the subcritical Sobolev exponent. The variational problems investigated in the book originate in many branches of applied science. A typical example is the nonl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1999
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | This book deals with nonlinear boundary value problems for semilinear elliptic equations on unbounded domains with nonlinearities involving the subcritical Sobolev exponent. The variational problems investigated in the book originate in many branches of applied science. A typical example is the nonlinear Schrödinger equation which appears in mathematical modeling phenomena arising in nonlinear optics and plasma physics. Solutions to these problems are found as critical points of variational functionals. The main difficulty in examining the compactness of Palais–Smale sequences arises from the fact that the Sobolev compact embedding theorems are no longer true on unbounded domains. In this book we develop the concentration–compactness principle at infinity, which is used to obtain the relative compactness of minimizing sequences. This tool, combined with some basic methods from the Lusternik–Schnirelman theory of critical points, is to investigate the existence of positive, symmetric and nodal solutions. The book also emphasizes the effect of the graph topology of coefficients on the existence of multiple solutions |
Beschreibung: | xi, 234 p. ill |
ISBN: | 9789812815064 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636449 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789812815064 |9 978-981-281-506-4 | ||
024 | 7 | |a 10.1142/4225 |2 doi | |
035 | |a (ZDB-124-WOP)00004309 | ||
035 | |a (OCoLC)1012650764 | ||
035 | |a (DE-599)BVBBV044636449 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.353 |2 22 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
100 | 1 | |a Chabrowski, Jan |d 1941- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Weak convergence methods for semilinear elliptic equations |c Jan Chabrowski |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1999 | |
300 | |a xi, 234 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book deals with nonlinear boundary value problems for semilinear elliptic equations on unbounded domains with nonlinearities involving the subcritical Sobolev exponent. The variational problems investigated in the book originate in many branches of applied science. A typical example is the nonlinear Schrödinger equation which appears in mathematical modeling phenomena arising in nonlinear optics and plasma physics. Solutions to these problems are found as critical points of variational functionals. The main difficulty in examining the compactness of Palais–Smale sequences arises from the fact that the Sobolev compact embedding theorems are no longer true on unbounded domains. In this book we develop the concentration–compactness principle at infinity, which is used to obtain the relative compactness of minimizing sequences. This tool, combined with some basic methods from the Lusternik–Schnirelman theory of critical points, is to investigate the existence of positive, symmetric and nodal solutions. The book also emphasizes the effect of the graph topology of coefficients on the existence of multiple solutions | ||
650 | 4 | |a Nonlinear boundary value problems / Numerical solutions | |
650 | 4 | |a Convergence | |
650 | 4 | |a Differential equations, Elliptic | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810240769 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810240767 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4225#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034421 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4225#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050801205248 |
---|---|
any_adam_object | |
author | Chabrowski, Jan 1941- |
author_facet | Chabrowski, Jan 1941- |
author_role | aut |
author_sort | Chabrowski, Jan 1941- |
author_variant | j c jc |
building | Verbundindex |
bvnumber | BV044636449 |
classification_rvk | SK 560 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004309 (OCoLC)1012650764 (DE-599)BVBBV044636449 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02622nmm a2200409zc 4500</leader><controlfield tag="001">BV044636449</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812815064</subfield><subfield code="9">978-981-281-506-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4225</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012650764</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636449</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chabrowski, Jan</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weak convergence methods for semilinear elliptic equations</subfield><subfield code="c">Jan Chabrowski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 234 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book deals with nonlinear boundary value problems for semilinear elliptic equations on unbounded domains with nonlinearities involving the subcritical Sobolev exponent. The variational problems investigated in the book originate in many branches of applied science. A typical example is the nonlinear Schrödinger equation which appears in mathematical modeling phenomena arising in nonlinear optics and plasma physics. Solutions to these problems are found as critical points of variational functionals. The main difficulty in examining the compactness of Palais–Smale sequences arises from the fact that the Sobolev compact embedding theorems are no longer true on unbounded domains. In this book we develop the concentration–compactness principle at infinity, which is used to obtain the relative compactness of minimizing sequences. This tool, combined with some basic methods from the Lusternik–Schnirelman theory of critical points, is to investigate the existence of positive, symmetric and nodal solutions. The book also emphasizes the effect of the graph topology of coefficients on the existence of multiple solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear boundary value problems / Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810240769</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810240767</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4225#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034421</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4225#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636449 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812815064 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034421 |
oclc_num | 1012650764 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xi, 234 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Chabrowski, Jan 1941- Verfasser aut Weak convergence methods for semilinear elliptic equations Jan Chabrowski Singapore World Scientific Pub. Co. c1999 xi, 234 p. ill txt rdacontent c rdamedia cr rdacarrier This book deals with nonlinear boundary value problems for semilinear elliptic equations on unbounded domains with nonlinearities involving the subcritical Sobolev exponent. The variational problems investigated in the book originate in many branches of applied science. A typical example is the nonlinear Schrödinger equation which appears in mathematical modeling phenomena arising in nonlinear optics and plasma physics. Solutions to these problems are found as critical points of variational functionals. The main difficulty in examining the compactness of Palais–Smale sequences arises from the fact that the Sobolev compact embedding theorems are no longer true on unbounded domains. In this book we develop the concentration–compactness principle at infinity, which is used to obtain the relative compactness of minimizing sequences. This tool, combined with some basic methods from the Lusternik–Schnirelman theory of critical points, is to investigate the existence of positive, symmetric and nodal solutions. The book also emphasizes the effect of the graph topology of coefficients on the existence of multiple solutions Nonlinear boundary value problems / Numerical solutions Convergence Differential equations, Elliptic Erscheint auch als Druck-Ausgabe 9789810240769 Erscheint auch als Druck-Ausgabe 9810240767 http://www.worldscientific.com/worldscibooks/10.1142/4225#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Chabrowski, Jan 1941- Weak convergence methods for semilinear elliptic equations Nonlinear boundary value problems / Numerical solutions Convergence Differential equations, Elliptic |
title | Weak convergence methods for semilinear elliptic equations |
title_auth | Weak convergence methods for semilinear elliptic equations |
title_exact_search | Weak convergence methods for semilinear elliptic equations |
title_full | Weak convergence methods for semilinear elliptic equations Jan Chabrowski |
title_fullStr | Weak convergence methods for semilinear elliptic equations Jan Chabrowski |
title_full_unstemmed | Weak convergence methods for semilinear elliptic equations Jan Chabrowski |
title_short | Weak convergence methods for semilinear elliptic equations |
title_sort | weak convergence methods for semilinear elliptic equations |
topic | Nonlinear boundary value problems / Numerical solutions Convergence Differential equations, Elliptic |
topic_facet | Nonlinear boundary value problems / Numerical solutions Convergence Differential equations, Elliptic |
url | http://www.worldscientific.com/worldscibooks/10.1142/4225#t=toc |
work_keys_str_mv | AT chabrowskijan weakconvergencemethodsforsemilinearellipticequations |