Kernels for structured data:
This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2008
|
Schriftenreihe: | Series in machine perception and artificial intelligence
v. 72 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers |
Beschreibung: | xvii, 197 p. ill. (some col.) |
ISBN: | 9789812814562 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044636413 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2008 |||| o||u| ||||||eng d | ||
020 | |a 9789812814562 |c electronic bk. |9 978-981-281-456-2 | ||
024 | 7 | |a 10.1142/6855 |2 doi | |
035 | |a (ZDB-124-WOP)00001458 | ||
035 | |a (OCoLC)1012646083 | ||
035 | |a (DE-599)BVBBV044636413 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 006.31 |2 22 | |
100 | 1 | |a Gartner, Thomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Kernels for structured data |c Thomas Gartner |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2008 | |
300 | |a xvii, 197 p. |b ill. (some col.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in machine perception and artificial intelligence |v v. 72 | |
520 | |a This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers | ||
650 | 4 | |a Machine learning | |
650 | 4 | |a Kernel functions | |
650 | 0 | 7 | |a Klassifikator |g Informatik |0 (DE-588)4288547-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strukturierte Daten |0 (DE-588)4620514-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strukturierte Daten |0 (DE-588)4620514-7 |D s |
689 | 0 | 1 | |a Klassifikator |g Informatik |0 (DE-588)4288547-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/6855#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034384 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/6855#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050752970752 |
---|---|
any_adam_object | |
author | Gartner, Thomas |
author_facet | Gartner, Thomas |
author_role | aut |
author_sort | Gartner, Thomas |
author_variant | t g tg |
building | Verbundindex |
bvnumber | BV044636413 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001458 (OCoLC)1012646083 (DE-599)BVBBV044636413 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02537nmm a2200445zcb4500</leader><controlfield tag="001">BV044636413</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812814562</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-456-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/6855</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001458 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012646083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636413</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gartner, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Kernels for structured data</subfield><subfield code="c">Thomas Gartner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 197 p.</subfield><subfield code="b">ill. (some col.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in machine perception and artificial intelligence</subfield><subfield code="v">v. 72</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikator</subfield><subfield code="g">Informatik</subfield><subfield code="0">(DE-588)4288547-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturierte Daten</subfield><subfield code="0">(DE-588)4620514-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strukturierte Daten</subfield><subfield code="0">(DE-588)4620514-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Klassifikator</subfield><subfield code="g">Informatik</subfield><subfield code="0">(DE-588)4288547-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6855#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034384</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6855#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636413 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812814562 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034384 |
oclc_num | 1012646083 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xvii, 197 p. ill. (some col.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series in machine perception and artificial intelligence |
spelling | Gartner, Thomas Verfasser aut Kernels for structured data Thomas Gartner Singapore World Scientific Pub. Co. c2008 xvii, 197 p. ill. (some col.) txt rdacontent c rdamedia cr rdacarrier Series in machine perception and artificial intelligence v. 72 This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers Machine learning Kernel functions Klassifikator Informatik (DE-588)4288547-4 gnd rswk-swf Strukturierte Daten (DE-588)4620514-7 gnd rswk-swf Strukturierte Daten (DE-588)4620514-7 s Klassifikator Informatik (DE-588)4288547-4 s 1\p DE-604 http://www.worldscientific.com/worldscibooks/10.1142/6855#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gartner, Thomas Kernels for structured data Machine learning Kernel functions Klassifikator Informatik (DE-588)4288547-4 gnd Strukturierte Daten (DE-588)4620514-7 gnd |
subject_GND | (DE-588)4288547-4 (DE-588)4620514-7 |
title | Kernels for structured data |
title_auth | Kernels for structured data |
title_exact_search | Kernels for structured data |
title_full | Kernels for structured data Thomas Gartner |
title_fullStr | Kernels for structured data Thomas Gartner |
title_full_unstemmed | Kernels for structured data Thomas Gartner |
title_short | Kernels for structured data |
title_sort | kernels for structured data |
topic | Machine learning Kernel functions Klassifikator Informatik (DE-588)4288547-4 gnd Strukturierte Daten (DE-588)4620514-7 gnd |
topic_facet | Machine learning Kernel functions Klassifikator Informatik Strukturierte Daten |
url | http://www.worldscientific.com/worldscibooks/10.1142/6855#t=toc |
work_keys_str_mv | AT gartnerthomas kernelsforstructureddata |