Variational principles for second-order differential equations: application of the Spencer theory to characterize variational sprays
The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2000
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext Inhaltsverzeichnis |
Zusammenfassung: | The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric. To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc |
Beschreibung: | x, 217 p. ill |
ISBN: | 9789812813596 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636370 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789812813596 |9 978-981-281-359-6 | ||
024 | 7 | |a 10.1142/3996 |2 doi | |
035 | |a (ZDB-124-WOP)00003897 | ||
035 | |a (OCoLC)1012631265 | ||
035 | |a (DE-599)BVBBV044636370 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.353 |2 22 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a Grifone, J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Variational principles for second-order differential equations |b application of the Spencer theory to characterize variational sprays |c Joseph Grifone, Zoltan Muzsnay |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2000 | |
300 | |a x, 217 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric. To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc | ||
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Variational principles | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsprinzip |0 (DE-588)4062354-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Variationsprinzip |0 (DE-588)4062354-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Muzsnay, Zoltan |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810237349 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810237340 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3996#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030034341&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034341 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3996#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050626093056 |
---|---|
adam_text | IMAGE 1
INHALTSVERZEICHNIS
EINFUEHRUNG IN DAS *TORTENSCHEMA ZUR CHEMIEDIDAKTIK.. 1
1 SCHUELERVORSTELLUNGEN 9
1.1 FACHLICHE SCHWERPUNKTE - THEORIEN AUS DER GESCHICHTE DER
NATURWISSENSCHAFTEN 11
1.2 LERNENDE - EMPIRISCHE HINWEISE AUF SCHUELERVORSTELLUNGEN 15 1.3
VERMITTLUNGSPROZESSE - BERUECKSICHTIGUNG DER SCHUELERVORSTELLUNGEN 22
1.4 GESELLSCHAFTLICHE BEZUGSFELDER - SCHUELERVORSTELLUNGEN UND
UMGANGSSPRACHE 24
LITERATUR 24
UEBUNGSAUFGABEN ZU *1 SCHUELERVORSTELLUNGEN 25
EXPERIMENTE ZU *1 SCHUELERVORSTELLUNGEN 26
2 MOTIVATION 35
2.1 LERNENDE - ENTWICKLUNGSSTAND, EINSTELLUNGEN UND URSPRUENGLICHE
VORSTELLUNGEN 36
2.2 VERMITTLUNGSPROZESSE - MOEGLICHKEITEN ZUM AUFBAU SACHBEZOGENER
MOTIVATION 38
2.3 FACHLICHE SCHWERPUNKTE - EXPERIMENTELLE FERTIGKEITEN 44 2.4
GESELLSCHAFTLICHE BEZUGSFELDER - MOTIVATION DURCH ALLTAGSSPRACHE UND
MEDIEN 45
LITERATUR 47
UEBUNGSAUFGABEN ZU *2 MOTIVATION 47
EXPERIMENTE ZU *2 MOTIVATION 48
3 UNTERRICHTSZIELE 55
ALLGEMEINDIDAKTISCHE EINFUEHRUNG 56
3.1 GESELLSCHAFTLICHE BEZUGSFELDER - RICHTLINIEN UND LEHRPLAENE 61 3.2
LERNENDE - KOGNITIVE ENTWICKLUNG, PRAEKONZEPTE, EINSTELLUNGEN, INTERESSEN
65
3.3 FACHLICHE SCHWERPUNKTE - CHEMIEUNTERRICHT ALS SPIRALCURRICULUM... 68
3.4 VERMITTLUNGSPROZESSE - METHODENVIELFALT ZUR REALISIERUNG VON
UNTERRICHTSZIELEN 72
LITERATUR 77
UEBUNGSAUFGABEN ZU *3 UNTERRICHTSZIELE 78
SCHEMA FUER EINEN UNTERRICHTSENTWURF (VORSCHLAG) 78
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1012631265
DIGITALISIERT DURCH
IMAGE 2
VIII INHALTSVERZEICHNIS
4 MEDIEN 79
4.1 VERMITTLUNGSPROZESSE - VIELFALT DER MEDIEN FUER DEN CHEMIEUNTERRICHT
81
4.2 FACHLICHE SCHWERPUNKTE - SACHLICHE ANGEMESSENHEIT VON MEDIEN 90
4.3 LERNENDE - MEDIEN UND ABSTRAKTIONSFAEHIGKEIT 92
4.4 GESELLSCHAFTLICHE BEZUGSFELDER - MASSENMEDIEN 95
LITERATUR 96
UEBUNGSAUFGABEN ZU *4 MEDIEN 97
EXPERIMENTE ZU *4 MEDIEN 97
5 EXPERIMENTE 103
5.1 FACHLICHE SCHWERPUNKTE - EXPERIMENTE, EXPERIMENTIERFAEHIGKEITEN,
SICHERHEIT 104
5.2 VERMITTLUNGSPROZESSE - FUNKTIONEN, AUSWAHLKRITERIEN UND FORMEN DES
EXPERIMENTS 111
5.3 LERNENDE - SPIELTRIEB UND NEUGIERVERHALTEN, EXPERIMENTELLE
FERTIGKEITEN 118
5.4 GESELLSCHAFTLICHE BEZUGSFELDER - UMWELT- UND ALLTAGSBEZUEGE,
HISTORISCHE ENTWICKLUNGEN 119
LITERATUR 121
UEBUNGSAUFGABEN ZU *5 EXPERIMENTE 121
PRAKTIKUM ZU *5 EXPERIMENTE 122
EXPERIMENTE ZU ALKALIMETALLEN 123
6 MODELLE, MODELLVORSTELLUNGEN 135
6.1 FACHLICHE SCHWERPUNKTE - MODELLE UND DEREN FUNKTIONEN 137 6.1.1
MODELLBEGRIFF UND ERKENNTNIS IN DEN NATURWISSENSCHAFTEN 137
6.1.2 DENKMODELLE IN DER CHEMIE 141
6.1.3 ANSCHAUUNGSMODELLE INDERCHEMIE 142
6.2 VERMITTLUNGSPROZESSE - MODELLE UND DEREN FACHDIDAKTISCHE FUNKTIONEN
145
6.2.1 VERMITTLUNG CHEMISCHER SACHVERHALTE DURCH MODELLVORSTELLUNGEN 146
6.2.2 ANPASSUNG UND ERWEITERUNG VON MODELLEN IM CHEMIEUNTERRICHT 148
6.2.3 WEITERE FUNKTIONEN VON MODELLEN UND MODELLVORSTELLUNGEN 150
6.3 LERNENDE - ERFAHRUNGEN MIT MODELLEN 152
6.4 GESELLSCHAFTLICHE BEZUGSFELDER - INTERDISZIPLINAERE
MODELLVORSTELLUNGEN 154
LITERATUR 155
UEBUNGSAUFGABEN ZU *6 MODELLE UND MODELLVORSTELLUNGEN 155 PRAKTIKUM:
STRUKTUREN DER METALLE UND SALZE 157
LOESUNGEN UND ZEICHNUNGEN ZU DEN AUFGABEN 161
IMAGE 3
INHALTSVERZEICHNIS IX
7 FACHSPRACHE UND SYMBOLE 163
7.1 FACHLICHE SCHWERPUNKTE - BEGRIFFE, SYMBOLE, GROESSEN, EINHEITEN 164
7.1.1 SYSTEME INTERNATIONALE UND ABGELEITETE EINHEITEN 164 7.1.2
SCHULRELEVANTE GROESSEN UND EINHEITEN 165
7.1.3 SCHULRELEVANTE FACHBEGRIFFE 167
7.2 VERMITTLUNGSPROZESSE - ALLTAGSSPRACHE -»* FACHSPRACHE - *
SYMBOLSPRACHE 174 7.2.1 VERKNUEPFUNG VON ALLTAGSSPRACHE UND FACHSPRACHE
174 7.2.2 DIE CHEMISCHE SYMBOLSPRACHE 177
7.2.3 ABLEITUNG ERSTER CHEMISCHER SYMBOLE IM UNTERRICHT 182 7.3 LERNENDE
- SCHUELERVORSTELLUNGEN ZU STRUKTUREN UND SYMBOLEN 184 7.4
GESELLSCHAFTLICHE BEZUGSFELDER - WIE WEIT VERSTEHT DER LAIE
DIE FACHSPRACHE? 187
LITERATUR 188
UEBUNGSAUFGABEN ZU *7 FACHSPRACHE UND SYMBOLE 188
8 ALLTAG UND CHEMIE 191
8.1 LERNENDE - NEUGIER UND INTERESSE 192
8.2 FACHLICHE SCHWERPUNKTE - FACHSYSTEMATIK VERSUS ALLTAGSCHEMIE 198
8.3 VERMITTLUNGSPROZESSE - FACHSYSTEMATIK PLUS ALLTAGSCHEMIE 205 8.4
GESELLSCHAFTLICHE BEZUGSFELDER - ROLLENSPIELE UND UMWELTBILDUNG 211
LITERATUR 215
UEBUNGSAUFGABEN ZU *8 ALLTAG UND CHEMIE 216
EXPERIMENTE ZU *8 ALLTAG UND CHEMIE 216
9 DER *HORROR VACUI IN DEN VORSTELLUNGEN ZUM TEILCHENKONZEPT 221
9.1 IST DAS VAKUUM WIRKLICH LEER? 222
9.2 VORSTELLUNGEN AUS VERGANGENEN JAHRHUNDERTEN 223
9.3 HORROR-VACUI-AEHNLICHE VORSTELLUNGEN BEI SCHUELERN 230 9.4 FOLGERUNGEN
FUER DEN UNTERRICHT 238
LITERATUR 243
EXPERIMENTE ZU *9 HORROR VACUI 244
10 RAUMVORSTELLUNG ZUR STRUKTUR VON TEILCHENVERBAENDEN 251
10.1 *RAUMVORSTELLUNG ALS FAKTOR DER INTELLIGENZ 251
10.2 EIGENE UNTERSUCHUNGSERGEBNISSE 255
10.3 DER RAUMVORSTELLUNGSTEST (RVT) 255
IMAGE 4
INHALTSVERZEICHNIS
10.4 RVT-UNTERSUCHUNGEN IM RAUM MUENSTER 262
10.5 RVT-LEISTUNGEN VON JUGENDLICHEN AUS DEUTSCHLAND UND AETHIOPIEN 267
LITERATUR 272
ANHANG 273
FARBTAFEL 287
SACHWORTVERZEICHNIS 289
|
any_adam_object | 1 |
author | Grifone, J. |
author_facet | Grifone, J. |
author_role | aut |
author_sort | Grifone, J. |
author_variant | j g jg |
building | Verbundindex |
bvnumber | BV044636370 |
classification_rvk | SK 540 SK 920 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003897 (OCoLC)1012631265 (DE-599)BVBBV044636370 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03027nmm a2200493zc 4500</leader><controlfield tag="001">BV044636370</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812813596</subfield><subfield code="9">978-981-281-359-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3996</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012631265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636370</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grifone, J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational principles for second-order differential equations</subfield><subfield code="b">application of the Spencer theory to characterize variational sprays</subfield><subfield code="c">Joseph Grifone, Zoltan Muzsnay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 217 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric. To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variational principles</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsprinzip</subfield><subfield code="0">(DE-588)4062354-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Variationsprinzip</subfield><subfield code="0">(DE-588)4062354-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muzsnay, Zoltan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810237349</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810237340</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3996#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030034341&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034341</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3996#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636370 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812813596 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034341 |
oclc_num | 1012631265 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 217 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Grifone, J. Verfasser aut Variational principles for second-order differential equations application of the Spencer theory to characterize variational sprays Joseph Grifone, Zoltan Muzsnay Singapore World Scientific Pub. Co. c2000 x, 217 p. ill txt rdacontent c rdamedia cr rdacarrier The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric. To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc Differential equations, Partial Variational principles Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Variationsprinzip (DE-588)4062354-3 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Variationsprinzip (DE-588)4062354-3 s DE-604 Muzsnay, Zoltan Sonstige oth Erscheint auch als Druck-Ausgabe 9789810237349 Erscheint auch als Druck-Ausgabe 9810237340 http://www.worldscientific.com/worldscibooks/10.1142/3996#t=toc Verlag URL des Erstveroeffentlichers Volltext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030034341&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Grifone, J. Variational principles for second-order differential equations application of the Spencer theory to characterize variational sprays Differential equations, Partial Variational principles Partielle Differentialgleichung (DE-588)4044779-0 gnd Variationsprinzip (DE-588)4062354-3 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4062354-3 |
title | Variational principles for second-order differential equations application of the Spencer theory to characterize variational sprays |
title_auth | Variational principles for second-order differential equations application of the Spencer theory to characterize variational sprays |
title_exact_search | Variational principles for second-order differential equations application of the Spencer theory to characterize variational sprays |
title_full | Variational principles for second-order differential equations application of the Spencer theory to characterize variational sprays Joseph Grifone, Zoltan Muzsnay |
title_fullStr | Variational principles for second-order differential equations application of the Spencer theory to characterize variational sprays Joseph Grifone, Zoltan Muzsnay |
title_full_unstemmed | Variational principles for second-order differential equations application of the Spencer theory to characterize variational sprays Joseph Grifone, Zoltan Muzsnay |
title_short | Variational principles for second-order differential equations |
title_sort | variational principles for second order differential equations application of the spencer theory to characterize variational sprays |
title_sub | application of the Spencer theory to characterize variational sprays |
topic | Differential equations, Partial Variational principles Partielle Differentialgleichung (DE-588)4044779-0 gnd Variationsprinzip (DE-588)4062354-3 gnd |
topic_facet | Differential equations, Partial Variational principles Partielle Differentialgleichung Variationsprinzip |
url | http://www.worldscientific.com/worldscibooks/10.1142/3996#t=toc http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030034341&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grifonej variationalprinciplesforsecondorderdifferentialequationsapplicationofthespencertheorytocharacterizevariationalsprays AT muzsnayzoltan variationalprinciplesforsecondorderdifferentialequationsapplicationofthespencertheorytocharacterizevariationalsprays |