Topics in nonlinear time series analysis: with implications for EEG analysis
This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dy...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2000
|
Schriftenreihe: | Advanced series in nonlinear dynamics
v. 14 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented - algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram |
Beschreibung: | xv, 342 p. ill |
ISBN: | 9789812813237 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044636344 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789812813237 |9 978-981-281-323-7 | ||
024 | 7 | |a 10.1142/4286 |2 doi | |
035 | |a (ZDB-124-WOP)00004030 | ||
035 | |a (OCoLC)855562842 | ||
035 | |a (DE-599)BVBBV044636344 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 519.55 |2 22 | |
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
084 | |a ST 600 |0 (DE-625)143681: |2 rvk | ||
100 | 1 | |a Galka, Andreas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topics in nonlinear time series analysis |b with implications for EEG analysis |c Andreas Galka |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2000 | |
300 | |a xv, 342 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced series in nonlinear dynamics |v v. 14 | |
520 | |a This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented - algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram | ||
650 | 4 | |a Time-series analysis | |
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Chaotic behavior in systems | |
650 | 4 | |a Electroencephalography / Mathematics | |
650 | 0 | 7 | |a Nichtlineare Zeitreihenanalyse |0 (DE-588)4276267-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Zeitreihenanalyse |0 (DE-588)4276267-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810241483 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810241488 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4286#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034315 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4286#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050571567104 |
---|---|
any_adam_object | |
author | Galka, Andreas |
author_facet | Galka, Andreas |
author_role | aut |
author_sort | Galka, Andreas |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV044636344 |
classification_rvk | SK 870 ST 600 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004030 (OCoLC)855562842 (DE-599)BVBBV044636344 |
dewey-full | 519.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.55 |
dewey-search | 519.55 |
dewey-sort | 3519.55 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02641nmm a2200493zcb4500</leader><controlfield tag="001">BV044636344</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812813237</subfield><subfield code="9">978-981-281-323-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4286</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004030</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)855562842</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636344</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Galka, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topics in nonlinear time series analysis</subfield><subfield code="b">with implications for EEG analysis</subfield><subfield code="c">Andreas Galka</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 342 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced series in nonlinear dynamics</subfield><subfield code="v">v. 14</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented - algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-series analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroencephalography / Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4276267-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4276267-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810241483</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810241488</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4286#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034315</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4286#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636344 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812813237 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034315 |
oclc_num | 855562842 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xv, 342 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Advanced series in nonlinear dynamics |
spelling | Galka, Andreas Verfasser aut Topics in nonlinear time series analysis with implications for EEG analysis Andreas Galka Singapore World Scientific Pub. Co. c2000 xv, 342 p. ill txt rdacontent c rdamedia cr rdacarrier Advanced series in nonlinear dynamics v. 14 This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented - algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram Time-series analysis Nonlinear theories Chaotic behavior in systems Electroencephalography / Mathematics Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd rswk-swf Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810241483 Erscheint auch als Druck-Ausgabe 9810241488 http://www.worldscientific.com/worldscibooks/10.1142/4286#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Galka, Andreas Topics in nonlinear time series analysis with implications for EEG analysis Time-series analysis Nonlinear theories Chaotic behavior in systems Electroencephalography / Mathematics Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd |
subject_GND | (DE-588)4276267-4 |
title | Topics in nonlinear time series analysis with implications for EEG analysis |
title_auth | Topics in nonlinear time series analysis with implications for EEG analysis |
title_exact_search | Topics in nonlinear time series analysis with implications for EEG analysis |
title_full | Topics in nonlinear time series analysis with implications for EEG analysis Andreas Galka |
title_fullStr | Topics in nonlinear time series analysis with implications for EEG analysis Andreas Galka |
title_full_unstemmed | Topics in nonlinear time series analysis with implications for EEG analysis Andreas Galka |
title_short | Topics in nonlinear time series analysis |
title_sort | topics in nonlinear time series analysis with implications for eeg analysis |
title_sub | with implications for EEG analysis |
topic | Time-series analysis Nonlinear theories Chaotic behavior in systems Electroencephalography / Mathematics Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd |
topic_facet | Time-series analysis Nonlinear theories Chaotic behavior in systems Electroencephalography / Mathematics Nichtlineare Zeitreihenanalyse |
url | http://www.worldscientific.com/worldscibooks/10.1142/4286#t=toc |
work_keys_str_mv | AT galkaandreas topicsinnonlineartimeseriesanalysiswithimplicationsforeeganalysis |