Universality in nonequilibrium lattice systems: theoretical foundations
Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in n...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2008
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems |
Beschreibung: | xix, 276 p. ill. (some col.) |
ISBN: | 9812812296 9789812812292 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636266 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2008 |||| o||u| ||||||eng d | ||
020 | |a 9812812296 |c electronic bk. |9 981-281-229-6 | ||
020 | |a 9789812812292 |c electronic bk. |9 978-981-281-229-2 | ||
024 | 7 | |a 10.1142/6813 |2 doi | |
035 | |a (ZDB-124-WOP)00001982 | ||
035 | |a (OCoLC)873614703 | ||
035 | |a (DE-599)BVBBV044636266 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.1595 |2 22 | |
100 | 1 | |a Odor, Geza |e Verfasser |4 aut | |
245 | 1 | 0 | |a Universality in nonequilibrium lattice systems |b theoretical foundations |c Geza Odor |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2008 | |
300 | |a xix, 276 p. |b ill. (some col.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems | ||
650 | 4 | |a Scaling laws (Statistical physics) | |
650 | 4 | |a Lattice theory | |
650 | 4 | |a Self-organizing systems | |
650 | 4 | |a Phase transformations (Statistical physics) | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 0 | 7 | |a Nichtgleichgewicht |0 (DE-588)4171730-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gittermodell |0 (DE-588)4226961-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Universalität |0 (DE-588)4186918-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gittermodell |0 (DE-588)4226961-1 |D s |
689 | 0 | 1 | |a Nichtgleichgewicht |0 (DE-588)4171730-2 |D s |
689 | 0 | 2 | |a Universalität |0 (DE-588)4186918-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/6813#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034237 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/6813#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050382823424 |
---|---|
any_adam_object | |
author | Odor, Geza |
author_facet | Odor, Geza |
author_role | aut |
author_sort | Odor, Geza |
author_variant | g o go |
building | Verbundindex |
bvnumber | BV044636266 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001982 (OCoLC)873614703 (DE-599)BVBBV044636266 |
dewey-full | 530.1595 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1595 |
dewey-search | 530.1595 |
dewey-sort | 3530.1595 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03501nmm a2200505zc 4500</leader><controlfield tag="001">BV044636266</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812812296</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-229-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812812292</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-229-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/6813</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001982 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873614703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636266</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1595</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Odor, Geza</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Universality in nonequilibrium lattice systems</subfield><subfield code="b">theoretical foundations</subfield><subfield code="c">Geza Odor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 276 p.</subfield><subfield code="b">ill. (some col.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scaling laws (Statistical physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-organizing systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase transformations (Statistical physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtgleichgewicht</subfield><subfield code="0">(DE-588)4171730-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universalität</subfield><subfield code="0">(DE-588)4186918-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gittermodell</subfield><subfield code="0">(DE-588)4226961-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtgleichgewicht</subfield><subfield code="0">(DE-588)4171730-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Universalität</subfield><subfield code="0">(DE-588)4186918-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6813#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034237</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6813#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636266 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9812812296 9789812812292 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034237 |
oclc_num | 873614703 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xix, 276 p. ill. (some col.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Odor, Geza Verfasser aut Universality in nonequilibrium lattice systems theoretical foundations Geza Odor Singapore World Scientific Pub. Co. c2008 xix, 276 p. ill. (some col.) txt rdacontent c rdamedia cr rdacarrier Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems Scaling laws (Statistical physics) Lattice theory Self-organizing systems Phase transformations (Statistical physics) Differentiable dynamical systems Nichtgleichgewicht (DE-588)4171730-2 gnd rswk-swf Gittermodell (DE-588)4226961-1 gnd rswk-swf Universalität (DE-588)4186918-7 gnd rswk-swf Gittermodell (DE-588)4226961-1 s Nichtgleichgewicht (DE-588)4171730-2 s Universalität (DE-588)4186918-7 s 1\p DE-604 http://www.worldscientific.com/worldscibooks/10.1142/6813#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Odor, Geza Universality in nonequilibrium lattice systems theoretical foundations Scaling laws (Statistical physics) Lattice theory Self-organizing systems Phase transformations (Statistical physics) Differentiable dynamical systems Nichtgleichgewicht (DE-588)4171730-2 gnd Gittermodell (DE-588)4226961-1 gnd Universalität (DE-588)4186918-7 gnd |
subject_GND | (DE-588)4171730-2 (DE-588)4226961-1 (DE-588)4186918-7 |
title | Universality in nonequilibrium lattice systems theoretical foundations |
title_auth | Universality in nonequilibrium lattice systems theoretical foundations |
title_exact_search | Universality in nonequilibrium lattice systems theoretical foundations |
title_full | Universality in nonequilibrium lattice systems theoretical foundations Geza Odor |
title_fullStr | Universality in nonequilibrium lattice systems theoretical foundations Geza Odor |
title_full_unstemmed | Universality in nonequilibrium lattice systems theoretical foundations Geza Odor |
title_short | Universality in nonequilibrium lattice systems |
title_sort | universality in nonequilibrium lattice systems theoretical foundations |
title_sub | theoretical foundations |
topic | Scaling laws (Statistical physics) Lattice theory Self-organizing systems Phase transformations (Statistical physics) Differentiable dynamical systems Nichtgleichgewicht (DE-588)4171730-2 gnd Gittermodell (DE-588)4226961-1 gnd Universalität (DE-588)4186918-7 gnd |
topic_facet | Scaling laws (Statistical physics) Lattice theory Self-organizing systems Phase transformations (Statistical physics) Differentiable dynamical systems Nichtgleichgewicht Gittermodell Universalität |
url | http://www.worldscientific.com/worldscibooks/10.1142/6813#t=toc |
work_keys_str_mv | AT odorgeza universalityinnonequilibriumlatticesystemstheoreticalfoundations |