Lectures on Finsler geometry:
In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curva...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2001
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D. Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory |
Beschreibung: | xiv, 307 p. ill |
ISBN: | 9789812811622 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636212 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789812811622 |9 978-981-281-162-2 | ||
024 | 7 | |a 10.1142/4619 |2 doi | |
035 | |a (ZDB-124-WOP)00004076 | ||
035 | |a (OCoLC)881299054 | ||
035 | |a (DE-599)BVBBV044636212 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.373 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
100 | 1 | |a Shen, Zhongmin |d 1963- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Finsler geometry |c Zhongmin Shen |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2001 | |
300 | |a xiv, 307 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D. Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory | ||
650 | 4 | |a Finsler spaces | |
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Finsler-Raum |0 (DE-588)4154449-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Finsler-Raum |0 (DE-588)4154449-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810245306 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810245300 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810245319 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4619#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034182 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4619#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050277965824 |
---|---|
any_adam_object | |
author | Shen, Zhongmin 1963- |
author_facet | Shen, Zhongmin 1963- |
author_role | aut |
author_sort | Shen, Zhongmin 1963- |
author_variant | z s zs |
building | Verbundindex |
bvnumber | BV044636212 |
classification_rvk | SK 370 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004076 (OCoLC)881299054 (DE-599)BVBBV044636212 |
dewey-full | 516.373 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.373 |
dewey-search | 516.373 |
dewey-sort | 3516.373 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02970nmm a2200457zc 4500</leader><controlfield tag="001">BV044636212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812811622</subfield><subfield code="9">978-981-281-162-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4619</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881299054</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636212</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.373</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Zhongmin</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Finsler geometry</subfield><subfield code="c">Zhongmin Shen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 307 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D. Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finsler spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finsler-Raum</subfield><subfield code="0">(DE-588)4154449-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finsler-Raum</subfield><subfield code="0">(DE-588)4154449-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810245306</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810245300</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810245319</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4619#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034182</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4619#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636212 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812811622 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034182 |
oclc_num | 881299054 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 307 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Shen, Zhongmin 1963- Verfasser aut Lectures on Finsler geometry Zhongmin Shen Singapore World Scientific Pub. Co. c2001 xiv, 307 p. ill txt rdacontent c rdamedia cr rdacarrier In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D. Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory Finsler spaces Geometry, Differential Finsler-Raum (DE-588)4154449-3 gnd rswk-swf Finsler-Raum (DE-588)4154449-3 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810245306 Erscheint auch als Druck-Ausgabe 9810245300 Erscheint auch als Druck-Ausgabe 9810245319 http://www.worldscientific.com/worldscibooks/10.1142/4619#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shen, Zhongmin 1963- Lectures on Finsler geometry Finsler spaces Geometry, Differential Finsler-Raum (DE-588)4154449-3 gnd |
subject_GND | (DE-588)4154449-3 |
title | Lectures on Finsler geometry |
title_auth | Lectures on Finsler geometry |
title_exact_search | Lectures on Finsler geometry |
title_full | Lectures on Finsler geometry Zhongmin Shen |
title_fullStr | Lectures on Finsler geometry Zhongmin Shen |
title_full_unstemmed | Lectures on Finsler geometry Zhongmin Shen |
title_short | Lectures on Finsler geometry |
title_sort | lectures on finsler geometry |
topic | Finsler spaces Geometry, Differential Finsler-Raum (DE-588)4154449-3 gnd |
topic_facet | Finsler spaces Geometry, Differential Finsler-Raum |
url | http://www.worldscientific.com/worldscibooks/10.1142/4619#t=toc |
work_keys_str_mv | AT shenzhongmin lecturesonfinslergeometry |