Introduction to gauge integrals:
This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an un...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2001
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc |
Beschreibung: | x, 157 p |
ISBN: | 9789812810656 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636125 | ||
003 | DE-604 | ||
005 | 20180222 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789812810656 |9 978-981-281-065-6 | ||
024 | 7 | |a 10.1142/4361 |2 doi | |
035 | |a (OCoLC)1012624450 | ||
035 | |a (DE-599)BVBBV044636125 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.43 |2 22 | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
100 | 1 | |a Swartz, Charles |d 1938- |e Verfasser |0 (DE-588)131653601 |4 aut | |
245 | 1 | 0 | |a Introduction to gauge integrals |c Charles Swartz |
246 | 1 | 3 | |a Gauge integrals |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2001 | |
300 | |a x, 157 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc | ||
650 | 4 | |a Henstock-Kurzweil integral | |
650 | 4 | |a McShane integral | |
650 | 0 | 7 | |a Henstock-Integration |0 (DE-588)4159545-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsches Integral |0 (DE-588)4049996-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsches Integral |0 (DE-588)4049996-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Henstock-Integration |0 (DE-588)4159545-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810242398 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810242395 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4361#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034096 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4361#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050080833536 |
---|---|
any_adam_object | |
author | Swartz, Charles 1938- |
author_GND | (DE-588)131653601 |
author_facet | Swartz, Charles 1938- |
author_role | aut |
author_sort | Swartz, Charles 1938- |
author_variant | c s cs |
building | Verbundindex |
bvnumber | BV044636125 |
classification_rvk | SK 430 |
collection | ZDB-124-WOP |
ctrlnum | (OCoLC)1012624450 (DE-599)BVBBV044636125 |
dewey-full | 515.43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.43 |
dewey-search | 515.43 |
dewey-sort | 3515.43 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02563nmm a2200493zc 4500</leader><controlfield tag="001">BV044636125</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180222 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810656</subfield><subfield code="9">978-981-281-065-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4361</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012624450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636125</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.43</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Swartz, Charles</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131653601</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to gauge integrals</subfield><subfield code="c">Charles Swartz</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Gauge integrals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 157 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Henstock-Kurzweil integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">McShane integral</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Henstock-Integration</subfield><subfield code="0">(DE-588)4159545-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsches Integral</subfield><subfield code="0">(DE-588)4049996-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Henstock-Integration</subfield><subfield code="0">(DE-588)4159545-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810242398</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810242395</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4361#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034096</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4361#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636125 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812810656 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034096 |
oclc_num | 1012624450 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 157 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Swartz, Charles 1938- Verfasser (DE-588)131653601 aut Introduction to gauge integrals Charles Swartz Gauge integrals Singapore World Scientific Pub. Co. c2001 x, 157 p txt rdacontent c rdamedia cr rdacarrier This book presents the Henstock/Kurzweil integral and the McShane integral. These two integrals are obtained by changing slightly the definition of the Riemann integral. These variations lead to integrals which are much more powerful than the Riemann integral. The Henstock/Kurzweil integral is an unconditional integral for which the fundamental theorem of calculus holds in full generality, while the McShane integral is equivalent to the Lebesgue integral in Euclidean spaces. A basic knowledge of introductory real analysis is required of the reader, who should be familiar with the fundamental properties of the real numbers, convergence, series, differentiation, continuity, etc Henstock-Kurzweil integral McShane integral Henstock-Integration (DE-588)4159545-2 gnd rswk-swf Riemannsches Integral (DE-588)4049996-0 gnd rswk-swf Riemannsches Integral (DE-588)4049996-0 s 1\p DE-604 Henstock-Integration (DE-588)4159545-2 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9789810242398 Erscheint auch als Druck-Ausgabe 9810242395 http://www.worldscientific.com/worldscibooks/10.1142/4361#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Swartz, Charles 1938- Introduction to gauge integrals Henstock-Kurzweil integral McShane integral Henstock-Integration (DE-588)4159545-2 gnd Riemannsches Integral (DE-588)4049996-0 gnd |
subject_GND | (DE-588)4159545-2 (DE-588)4049996-0 |
title | Introduction to gauge integrals |
title_alt | Gauge integrals |
title_auth | Introduction to gauge integrals |
title_exact_search | Introduction to gauge integrals |
title_full | Introduction to gauge integrals Charles Swartz |
title_fullStr | Introduction to gauge integrals Charles Swartz |
title_full_unstemmed | Introduction to gauge integrals Charles Swartz |
title_short | Introduction to gauge integrals |
title_sort | introduction to gauge integrals |
topic | Henstock-Kurzweil integral McShane integral Henstock-Integration (DE-588)4159545-2 gnd Riemannsches Integral (DE-588)4049996-0 gnd |
topic_facet | Henstock-Kurzweil integral McShane integral Henstock-Integration Riemannsches Integral |
url | http://www.worldscientific.com/worldscibooks/10.1142/4361#t=toc |
work_keys_str_mv | AT swartzcharles introductiontogaugeintegrals AT swartzcharles gaugeintegrals |