Functorial knot theory: categories of tangles, coherence, categorical deformations, and topological invariants
Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures natural...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2001
|
Schriftenreihe: | K & E series on knots and everything
v. 26 |
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory. This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber's deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations |
Beschreibung: | 230 p. ill |
ISBN: | 9789812810465 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044636108 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789812810465 |c electronic bk. |9 978-981-281-046-5 | ||
024 | 7 | |a 10.1142/4542 |2 doi | |
035 | |a (ZDB-124-WOP)00003197 | ||
035 | |a (OCoLC)1012670500 | ||
035 | |a (DE-599)BVBBV044636108 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 514.224 |2 22 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Yetter, David N. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Functorial knot theory |b categories of tangles, coherence, categorical deformations, and topological invariants |c David N. Yetter |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2001 | |
300 | |a 230 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a K & E series on knots and everything |v v. 26 | |
520 | |a Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory. This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber's deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations | ||
650 | 4 | |a Knot theory | |
650 | 4 | |a Categories (Mathematics) | |
650 | 4 | |a Functor theory | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810244439 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810244436 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4542#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034080 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4542#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050037841920 |
---|---|
any_adam_object | |
author | Yetter, David N. |
author_facet | Yetter, David N. |
author_role | aut |
author_sort | Yetter, David N. |
author_variant | d n y dn dny |
building | Verbundindex |
bvnumber | BV044636108 |
classification_rvk | SK 300 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003197 (OCoLC)1012670500 (DE-599)BVBBV044636108 |
dewey-full | 514.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.224 |
dewey-search | 514.224 |
dewey-sort | 3514.224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02549nmm a2200421zcb4500</leader><controlfield tag="001">BV044636108</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810465</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-046-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4542</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012670500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636108</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.224</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yetter, David N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functorial knot theory</subfield><subfield code="b">categories of tangles, coherence, categorical deformations, and topological invariants</subfield><subfield code="c">David N. Yetter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">230 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">K & E series on knots and everything</subfield><subfield code="v">v. 26</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory. This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber's deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functor theory</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810244439</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810244436</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4542#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034080</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4542#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636108 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812810465 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034080 |
oclc_num | 1012670500 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 230 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | K & E series on knots and everything |
spelling | Yetter, David N. Verfasser aut Functorial knot theory categories of tangles, coherence, categorical deformations, and topological invariants David N. Yetter Singapore World Scientific Pub. Co. c2001 230 p. ill txt rdacontent c rdamedia cr rdacarrier K & E series on knots and everything v. 26 Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory. This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber's deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations Knot theory Categories (Mathematics) Functor theory Erscheint auch als Druck-Ausgabe 9789810244439 Erscheint auch als Druck-Ausgabe 9810244436 http://www.worldscientific.com/worldscibooks/10.1142/4542#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Yetter, David N. Functorial knot theory categories of tangles, coherence, categorical deformations, and topological invariants Knot theory Categories (Mathematics) Functor theory |
title | Functorial knot theory categories of tangles, coherence, categorical deformations, and topological invariants |
title_auth | Functorial knot theory categories of tangles, coherence, categorical deformations, and topological invariants |
title_exact_search | Functorial knot theory categories of tangles, coherence, categorical deformations, and topological invariants |
title_full | Functorial knot theory categories of tangles, coherence, categorical deformations, and topological invariants David N. Yetter |
title_fullStr | Functorial knot theory categories of tangles, coherence, categorical deformations, and topological invariants David N. Yetter |
title_full_unstemmed | Functorial knot theory categories of tangles, coherence, categorical deformations, and topological invariants David N. Yetter |
title_short | Functorial knot theory |
title_sort | functorial knot theory categories of tangles coherence categorical deformations and topological invariants |
title_sub | categories of tangles, coherence, categorical deformations, and topological invariants |
topic | Knot theory Categories (Mathematics) Functor theory |
topic_facet | Knot theory Categories (Mathematics) Functor theory |
url | http://www.worldscientific.com/worldscibooks/10.1142/4542#t=toc |
work_keys_str_mv | AT yetterdavidn functorialknottheorycategoriesoftanglescoherencecategoricaldeformationsandtopologicalinvariants |