Scissors congruences, group homology and characteristic classes:
These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume &q...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2001
|
Schriftenreihe: | Nankai tracts in mathematics
1 |
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume "scissors-congruent", i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time |
Beschreibung: | viii, 168 p. ill |
ISBN: | 9789812810335 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044636098 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789812810335 |9 978-981-281-033-5 | ||
024 | 7 | |a 10.1142/4598 |2 doi | |
035 | |a (ZDB-124-WOP)00004435 | ||
035 | |a (OCoLC)740729319 | ||
035 | |a (DE-599)BVBBV044636098 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.15 |2 22 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Dupont, Johan L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Scissors congruences, group homology and characteristic classes |c Johan L. Dupont |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2001 | |
300 | |a viii, 168 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Nankai tracts in mathematics |v 1 | |
520 | |a These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume "scissors-congruent", i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time | ||
650 | 4 | |a Tetrahedra | |
650 | 4 | |a Volume (Cubic content) | |
650 | 4 | |a Characteristic classes | |
650 | 0 | 7 | |a Homologische Algebra |0 (DE-588)4160598-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische K-Theorie |0 (DE-588)4141839-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbertsches Problem 3 |0 (DE-588)4159863-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hilbertsches Problem 3 |0 (DE-588)4159863-5 |D s |
689 | 0 | 1 | |a Algebraische K-Theorie |0 (DE-588)4141839-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hilbertsches Problem 3 |0 (DE-588)4159863-5 |D s |
689 | 1 | 1 | |a Homologische Algebra |0 (DE-588)4160598-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810245078 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810245076 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810245084 (pbk.) |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4598#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034070 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4598#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050026307584 |
---|---|
any_adam_object | |
author | Dupont, Johan L. |
author_facet | Dupont, Johan L. |
author_role | aut |
author_sort | Dupont, Johan L. |
author_variant | j l d jl jld |
building | Verbundindex |
bvnumber | BV044636098 |
classification_rvk | SK 300 SK 320 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004435 (OCoLC)740729319 (DE-599)BVBBV044636098 |
dewey-full | 516.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.15 |
dewey-search | 516.15 |
dewey-sort | 3516.15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03114nmm a2200577zcb4500</leader><controlfield tag="001">BV044636098</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810335</subfield><subfield code="9">978-981-281-033-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4598</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004435</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)740729319</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636098</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.15</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dupont, Johan L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scissors congruences, group homology and characteristic classes</subfield><subfield code="c">Johan L. Dupont</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 168 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nankai tracts in mathematics</subfield><subfield code="v">1</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume "scissors-congruent", i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tetrahedra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volume (Cubic content)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characteristic classes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische K-Theorie</subfield><subfield code="0">(DE-588)4141839-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbertsches Problem 3</subfield><subfield code="0">(DE-588)4159863-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbertsches Problem 3</subfield><subfield code="0">(DE-588)4159863-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische K-Theorie</subfield><subfield code="0">(DE-588)4141839-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hilbertsches Problem 3</subfield><subfield code="0">(DE-588)4159863-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810245078</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810245076</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810245084 (pbk.)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4598#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034070</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4598#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636098 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812810335 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034070 |
oclc_num | 740729319 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | viii, 168 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Nankai tracts in mathematics |
spelling | Dupont, Johan L. Verfasser aut Scissors congruences, group homology and characteristic classes Johan L. Dupont Singapore World Scientific Pub. Co. c2001 viii, 168 p. ill txt rdacontent c rdamedia cr rdacarrier Nankai tracts in mathematics 1 These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume "scissors-congruent", i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time Tetrahedra Volume (Cubic content) Characteristic classes Homologische Algebra (DE-588)4160598-6 gnd rswk-swf Algebraische K-Theorie (DE-588)4141839-6 gnd rswk-swf Hilbertsches Problem 3 (DE-588)4159863-5 gnd rswk-swf Hilbertsches Problem 3 (DE-588)4159863-5 s Algebraische K-Theorie (DE-588)4141839-6 s 1\p DE-604 Homologische Algebra (DE-588)4160598-6 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9789810245078 Erscheint auch als Druck-Ausgabe 9810245076 Erscheint auch als Druck-Ausgabe 9810245084 (pbk.) http://www.worldscientific.com/worldscibooks/10.1142/4598#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dupont, Johan L. Scissors congruences, group homology and characteristic classes Tetrahedra Volume (Cubic content) Characteristic classes Homologische Algebra (DE-588)4160598-6 gnd Algebraische K-Theorie (DE-588)4141839-6 gnd Hilbertsches Problem 3 (DE-588)4159863-5 gnd |
subject_GND | (DE-588)4160598-6 (DE-588)4141839-6 (DE-588)4159863-5 |
title | Scissors congruences, group homology and characteristic classes |
title_auth | Scissors congruences, group homology and characteristic classes |
title_exact_search | Scissors congruences, group homology and characteristic classes |
title_full | Scissors congruences, group homology and characteristic classes Johan L. Dupont |
title_fullStr | Scissors congruences, group homology and characteristic classes Johan L. Dupont |
title_full_unstemmed | Scissors congruences, group homology and characteristic classes Johan L. Dupont |
title_short | Scissors congruences, group homology and characteristic classes |
title_sort | scissors congruences group homology and characteristic classes |
topic | Tetrahedra Volume (Cubic content) Characteristic classes Homologische Algebra (DE-588)4160598-6 gnd Algebraische K-Theorie (DE-588)4141839-6 gnd Hilbertsches Problem 3 (DE-588)4159863-5 gnd |
topic_facet | Tetrahedra Volume (Cubic content) Characteristic classes Homologische Algebra Algebraische K-Theorie Hilbertsches Problem 3 |
url | http://www.worldscientific.com/worldscibooks/10.1142/4598#t=toc |
work_keys_str_mv | AT dupontjohanl scissorscongruencesgrouphomologyandcharacteristicclasses |