Nonlinear diffusion equations:
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biolog...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2001
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which enrich the theory of partial differential equations. This book provides a comprehensive presentation of the basic problems, main results and typical methods for nonlinear diffusion equations with degeneracy. Some results for equations with singularity are touched upon |
Beschreibung: | xvii, 502 p |
ISBN: | 9789812799791 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636048 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789812799791 |9 978-981-279-979-1 | ||
024 | 7 | |a 10.1142/4782 |2 doi | |
035 | |a (ZDB-124-WOP)00004150 | ||
035 | |a (OCoLC)881299033 | ||
035 | |a (DE-599)BVBBV044636048 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.35 |2 22 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
245 | 1 | 0 | |a Nonlinear diffusion equations |c Zhuoqun Wu ... [et al.] |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2001 | |
300 | |a xvii, 502 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which enrich the theory of partial differential equations. This book provides a comprehensive presentation of the basic problems, main results and typical methods for nonlinear diffusion equations with degeneracy. Some results for equations with singularity are touched upon | ||
650 | 4 | |a Burgers equation | |
650 | 4 | |a Heat equation | |
650 | 0 | 7 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wu, Zhuoqun |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810247188 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810247184 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4782#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034020 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4782#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178049885798400 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV044636048 |
classification_rvk | SK 560 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004150 (OCoLC)881299033 (DE-599)BVBBV044636048 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02496nmm a2200445zc 4500</leader><controlfield tag="001">BV044636048</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812799791</subfield><subfield code="9">978-981-279-979-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4782</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881299033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636048</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear diffusion equations</subfield><subfield code="c">Zhuoqun Wu ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 502 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which enrich the theory of partial differential equations. This book provides a comprehensive presentation of the basic problems, main results and typical methods for nonlinear diffusion equations with degeneracy. Some results for equations with singularity are touched upon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Burgers equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat equation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Zhuoqun</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810247188</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810247184</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4782#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034020</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4782#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636048 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812799791 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034020 |
oclc_num | 881299033 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xvii, 502 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Nonlinear diffusion equations Zhuoqun Wu ... [et al.] Singapore World Scientific Pub. Co. c2001 xvii, 502 p txt rdacontent c rdamedia cr rdacarrier Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which enrich the theory of partial differential equations. This book provides a comprehensive presentation of the basic problems, main results and typical methods for nonlinear diffusion equations with degeneracy. Some results for equations with singularity are touched upon Burgers equation Heat equation Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd rswk-swf Nichtlineare Diffusionsgleichung (DE-588)4171749-1 s 1\p DE-604 Wu, Zhuoqun Sonstige oth Erscheint auch als Druck-Ausgabe 9789810247188 Erscheint auch als Druck-Ausgabe 9810247184 http://www.worldscientific.com/worldscibooks/10.1142/4782#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nonlinear diffusion equations Burgers equation Heat equation Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd |
subject_GND | (DE-588)4171749-1 |
title | Nonlinear diffusion equations |
title_auth | Nonlinear diffusion equations |
title_exact_search | Nonlinear diffusion equations |
title_full | Nonlinear diffusion equations Zhuoqun Wu ... [et al.] |
title_fullStr | Nonlinear diffusion equations Zhuoqun Wu ... [et al.] |
title_full_unstemmed | Nonlinear diffusion equations Zhuoqun Wu ... [et al.] |
title_short | Nonlinear diffusion equations |
title_sort | nonlinear diffusion equations |
topic | Burgers equation Heat equation Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd |
topic_facet | Burgers equation Heat equation Nichtlineare Diffusionsgleichung |
url | http://www.worldscientific.com/worldscibooks/10.1142/4782#t=toc |
work_keys_str_mv | AT wuzhuoqun nonlineardiffusionequations |