Computational analysis of one-dimensional cellular automata:
Cellular automata provide one of the most interesting avenues into the study of complex systems in general, as well as having an intrinsic interest of their own. Because of their mathematical simplicity and representational robustness they have been used to model economic, political, biological, eco...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1996
|
Schriftenreihe: | World scientific series on nonlinear science. Series A
v. 15 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Cellular automata provide one of the most interesting avenues into the study of complex systems in general, as well as having an intrinsic interest of their own. Because of their mathematical simplicity and representational robustness they have been used to model economic, political, biological, ecological, chemical, and physical systems. Almost any system which can be treated in terms of a discrete representation space in which the dynamics is based on local interaction rules can be modelled by a cellular automata. The aim of this book is to give an introduction to the analysis of cellular automata (CA) in terms of an approach in which CA rules are viewed as elements of a nonlinear operator algebra, which can be expressed in component form much as ordinary vectors are in vector algebra. Although a variety of different topics are covered, this viewpoint provides the underlying theme. The actual mathematics used is not hard, and the material should be accessible to anyone with a junior level university background, and a certain degree of mathematical maturity |
Beschreibung: | x, 275 p. ill. (some col.) |
ISBN: | 9789812798671 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044635975 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789812798671 |9 978-981-279-867-1 | ||
024 | 7 | |a 10.1142/2712 |2 doi | |
035 | |a (ZDB-124-WOP)00005211 | ||
035 | |a (OCoLC)1012674721 | ||
035 | |a (DE-599)BVBBV044635975 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 511.3 |2 22 | |
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
100 | 1 | |a Voorhees, Burton H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computational analysis of one-dimensional cellular automata |c Burton H. Voorhees |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1996 | |
300 | |a x, 275 p. |b ill. (some col.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World scientific series on nonlinear science. Series A |v v. 15 | |
520 | |a Cellular automata provide one of the most interesting avenues into the study of complex systems in general, as well as having an intrinsic interest of their own. Because of their mathematical simplicity and representational robustness they have been used to model economic, political, biological, ecological, chemical, and physical systems. Almost any system which can be treated in terms of a discrete representation space in which the dynamics is based on local interaction rules can be modelled by a cellular automata. The aim of this book is to give an introduction to the analysis of cellular automata (CA) in terms of an approach in which CA rules are viewed as elements of a nonlinear operator algebra, which can be expressed in component form much as ordinary vectors are in vector algebra. Although a variety of different topics are covered, this viewpoint provides the underlying theme. The actual mathematics used is not hard, and the material should be accessible to anyone with a junior level university background, and a certain degree of mathematical maturity | ||
650 | 4 | |a Cellular automata | |
650 | 4 | |a Computational complexity | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810222215 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810222211 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2712#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033947 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2712#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178049714880512 |
---|---|
any_adam_object | |
author | Voorhees, Burton H. |
author_facet | Voorhees, Burton H. |
author_role | aut |
author_sort | Voorhees, Burton H. |
author_variant | b h v bh bhv |
building | Verbundindex |
bvnumber | BV044635975 |
classification_rvk | ST 130 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005211 (OCoLC)1012674721 (DE-599)BVBBV044635975 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02574nmm a2200409zcb4500</leader><controlfield tag="001">BV044635975</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812798671</subfield><subfield code="9">978-981-279-867-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2712</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012674721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635975</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Voorhees, Burton H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational analysis of one-dimensional cellular automata</subfield><subfield code="c">Burton H. Voorhees</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 275 p.</subfield><subfield code="b">ill. (some col.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World scientific series on nonlinear science. Series A</subfield><subfield code="v">v. 15</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cellular automata provide one of the most interesting avenues into the study of complex systems in general, as well as having an intrinsic interest of their own. Because of their mathematical simplicity and representational robustness they have been used to model economic, political, biological, ecological, chemical, and physical systems. Almost any system which can be treated in terms of a discrete representation space in which the dynamics is based on local interaction rules can be modelled by a cellular automata. The aim of this book is to give an introduction to the analysis of cellular automata (CA) in terms of an approach in which CA rules are viewed as elements of a nonlinear operator algebra, which can be expressed in component form much as ordinary vectors are in vector algebra. Although a variety of different topics are covered, this viewpoint provides the underlying theme. The actual mathematics used is not hard, and the material should be accessible to anyone with a junior level university background, and a certain degree of mathematical maturity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular automata</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810222215</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810222211</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2712#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033947</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2712#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635975 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812798671 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033947 |
oclc_num | 1012674721 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 275 p. ill. (some col.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | World scientific series on nonlinear science. Series A |
spelling | Voorhees, Burton H. Verfasser aut Computational analysis of one-dimensional cellular automata Burton H. Voorhees Singapore World Scientific Pub. Co. c1996 x, 275 p. ill. (some col.) txt rdacontent c rdamedia cr rdacarrier World scientific series on nonlinear science. Series A v. 15 Cellular automata provide one of the most interesting avenues into the study of complex systems in general, as well as having an intrinsic interest of their own. Because of their mathematical simplicity and representational robustness they have been used to model economic, political, biological, ecological, chemical, and physical systems. Almost any system which can be treated in terms of a discrete representation space in which the dynamics is based on local interaction rules can be modelled by a cellular automata. The aim of this book is to give an introduction to the analysis of cellular automata (CA) in terms of an approach in which CA rules are viewed as elements of a nonlinear operator algebra, which can be expressed in component form much as ordinary vectors are in vector algebra. Although a variety of different topics are covered, this viewpoint provides the underlying theme. The actual mathematics used is not hard, and the material should be accessible to anyone with a junior level university background, and a certain degree of mathematical maturity Cellular automata Computational complexity Erscheint auch als Druck-Ausgabe 9789810222215 Erscheint auch als Druck-Ausgabe 9810222211 http://www.worldscientific.com/worldscibooks/10.1142/2712#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Voorhees, Burton H. Computational analysis of one-dimensional cellular automata Cellular automata Computational complexity |
title | Computational analysis of one-dimensional cellular automata |
title_auth | Computational analysis of one-dimensional cellular automata |
title_exact_search | Computational analysis of one-dimensional cellular automata |
title_full | Computational analysis of one-dimensional cellular automata Burton H. Voorhees |
title_fullStr | Computational analysis of one-dimensional cellular automata Burton H. Voorhees |
title_full_unstemmed | Computational analysis of one-dimensional cellular automata Burton H. Voorhees |
title_short | Computational analysis of one-dimensional cellular automata |
title_sort | computational analysis of one dimensional cellular automata |
topic | Cellular automata Computational complexity |
topic_facet | Cellular automata Computational complexity |
url | http://www.worldscientific.com/worldscibooks/10.1142/2712#t=toc |
work_keys_str_mv | AT voorheesburtonh computationalanalysisofonedimensionalcellularautomata |