Hopf bifurcation analysis: a frequency domain approach
This book is devoted to the frequency domain approach, for both regular and degenerate Hopf bifurcation analyses. Besides showing that the time and frequency domain approaches are in fact equivalent, the fact that many significant results and computational formulas obtained in the studies of regular...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1996
|
Schriftenreihe: | World Scientific series on nonlinear science. Series A
vol. 21 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book is devoted to the frequency domain approach, for both regular and degenerate Hopf bifurcation analyses. Besides showing that the time and frequency domain approaches are in fact equivalent, the fact that many significant results and computational formulas obtained in the studies of regular and degenerate Hopf bifurcations from the time domain approach can be translated and reformulated into the corresponding frequency domain setting, and be reconfirmed and rediscovered by using the frequency domain methods, is also explained. The description of how the frequency domain approach can be used to obtain several types of standard bifurcation conditions for general nonlinear dynamical systems is given as well as is demonstrated a very rich pictorial gallery of local bifurcation diagrams for nonlinear systems under simultaneous variations of several system parameters. In conjunction with this graphical analysis of local bifurcation diagrams, the defining and nondegeneracy conditions for several degenerate Hopf bifurcations is presented. With a great deal of algebraic computation, some higher-order harmonic balance approximation formulas are derived, for analyzing the dynamical behavior in small neighborhoods of certain types of degenerate Hopf bifurcations that involve multiple limit cycles and multiple limit points of periodic solutions. In addition, applications in chemical, mechanical and electrical engineering as well as in biology are discussed. This book is designed and written in a style of research monographs rather than classroom textbooks, so that the most recent contributions to the field can be included with references |
Beschreibung: | xv, 326 p. ill |
ISBN: | 9789812798633 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044635971 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789812798633 |9 978-981-279-863-3 | ||
024 | 7 | |a 10.1142/3070 |2 doi | |
035 | |a (ZDB-124-WOP)00004856 | ||
035 | |a (OCoLC)1012634012 | ||
035 | |a (DE-599)BVBBV044635971 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.35 |2 22 | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Moiola, Jorge L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hopf bifurcation analysis |b a frequency domain approach |c Jorge L. Moiola, Guanrong Chen |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1996 | |
300 | |a xv, 326 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Scientific series on nonlinear science. Series A |v vol. 21 | |
520 | |a This book is devoted to the frequency domain approach, for both regular and degenerate Hopf bifurcation analyses. Besides showing that the time and frequency domain approaches are in fact equivalent, the fact that many significant results and computational formulas obtained in the studies of regular and degenerate Hopf bifurcations from the time domain approach can be translated and reformulated into the corresponding frequency domain setting, and be reconfirmed and rediscovered by using the frequency domain methods, is also explained. The description of how the frequency domain approach can be used to obtain several types of standard bifurcation conditions for general nonlinear dynamical systems is given as well as is demonstrated a very rich pictorial gallery of local bifurcation diagrams for nonlinear systems under simultaneous variations of several system parameters. In conjunction with this graphical analysis of local bifurcation diagrams, the defining and nondegeneracy conditions for several degenerate Hopf bifurcations is presented. With a great deal of algebraic computation, some higher-order harmonic balance approximation formulas are derived, for analyzing the dynamical behavior in small neighborhoods of certain types of degenerate Hopf bifurcations that involve multiple limit cycles and multiple limit points of periodic solutions. In addition, applications in chemical, mechanical and electrical engineering as well as in biology are discussed. This book is designed and written in a style of research monographs rather than classroom textbooks, so that the most recent contributions to the field can be included with references | ||
650 | 4 | |a Bifurcation theory | |
650 | 4 | |a Differential equations, Nonlinear / Numerical solutions | |
650 | 0 | 7 | |a Hopf-Verzweigung |0 (DE-588)4160648-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Frequenzbereichsdarstellung |0 (DE-588)4199376-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hopf-Verzweigung |0 (DE-588)4160648-6 |D s |
689 | 0 | 1 | |a Frequenzbereichsdarstellung |0 (DE-588)4199376-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Chen, G. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810226282 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810226284 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3070#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033943 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3070#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178049713831936 |
---|---|
any_adam_object | |
author | Moiola, Jorge L. |
author_facet | Moiola, Jorge L. |
author_role | aut |
author_sort | Moiola, Jorge L. |
author_variant | j l m jl jlm |
building | Verbundindex |
bvnumber | BV044635971 |
classification_rvk | SK 520 SK 620 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004856 (OCoLC)1012634012 (DE-599)BVBBV044635971 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03653nmm a2200505zcb4500</leader><controlfield tag="001">BV044635971</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812798633</subfield><subfield code="9">978-981-279-863-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012634012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635971</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moiola, Jorge L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hopf bifurcation analysis</subfield><subfield code="b">a frequency domain approach</subfield><subfield code="c">Jorge L. Moiola, Guanrong Chen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 326 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series on nonlinear science. Series A</subfield><subfield code="v">vol. 21</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is devoted to the frequency domain approach, for both regular and degenerate Hopf bifurcation analyses. Besides showing that the time and frequency domain approaches are in fact equivalent, the fact that many significant results and computational formulas obtained in the studies of regular and degenerate Hopf bifurcations from the time domain approach can be translated and reformulated into the corresponding frequency domain setting, and be reconfirmed and rediscovered by using the frequency domain methods, is also explained. The description of how the frequency domain approach can be used to obtain several types of standard bifurcation conditions for general nonlinear dynamical systems is given as well as is demonstrated a very rich pictorial gallery of local bifurcation diagrams for nonlinear systems under simultaneous variations of several system parameters. In conjunction with this graphical analysis of local bifurcation diagrams, the defining and nondegeneracy conditions for several degenerate Hopf bifurcations is presented. With a great deal of algebraic computation, some higher-order harmonic balance approximation formulas are derived, for analyzing the dynamical behavior in small neighborhoods of certain types of degenerate Hopf bifurcations that involve multiple limit cycles and multiple limit points of periodic solutions. In addition, applications in chemical, mechanical and electrical engineering as well as in biology are discussed. This book is designed and written in a style of research monographs rather than classroom textbooks, so that the most recent contributions to the field can be included with references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear / Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hopf-Verzweigung</subfield><subfield code="0">(DE-588)4160648-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Frequenzbereichsdarstellung</subfield><subfield code="0">(DE-588)4199376-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hopf-Verzweigung</subfield><subfield code="0">(DE-588)4160648-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Frequenzbereichsdarstellung</subfield><subfield code="0">(DE-588)4199376-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810226282</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810226284</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3070#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033943</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3070#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635971 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812798633 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033943 |
oclc_num | 1012634012 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xv, 326 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | World Scientific series on nonlinear science. Series A |
spelling | Moiola, Jorge L. Verfasser aut Hopf bifurcation analysis a frequency domain approach Jorge L. Moiola, Guanrong Chen Singapore World Scientific Pub. Co. c1996 xv, 326 p. ill txt rdacontent c rdamedia cr rdacarrier World Scientific series on nonlinear science. Series A vol. 21 This book is devoted to the frequency domain approach, for both regular and degenerate Hopf bifurcation analyses. Besides showing that the time and frequency domain approaches are in fact equivalent, the fact that many significant results and computational formulas obtained in the studies of regular and degenerate Hopf bifurcations from the time domain approach can be translated and reformulated into the corresponding frequency domain setting, and be reconfirmed and rediscovered by using the frequency domain methods, is also explained. The description of how the frequency domain approach can be used to obtain several types of standard bifurcation conditions for general nonlinear dynamical systems is given as well as is demonstrated a very rich pictorial gallery of local bifurcation diagrams for nonlinear systems under simultaneous variations of several system parameters. In conjunction with this graphical analysis of local bifurcation diagrams, the defining and nondegeneracy conditions for several degenerate Hopf bifurcations is presented. With a great deal of algebraic computation, some higher-order harmonic balance approximation formulas are derived, for analyzing the dynamical behavior in small neighborhoods of certain types of degenerate Hopf bifurcations that involve multiple limit cycles and multiple limit points of periodic solutions. In addition, applications in chemical, mechanical and electrical engineering as well as in biology are discussed. This book is designed and written in a style of research monographs rather than classroom textbooks, so that the most recent contributions to the field can be included with references Bifurcation theory Differential equations, Nonlinear / Numerical solutions Hopf-Verzweigung (DE-588)4160648-6 gnd rswk-swf Frequenzbereichsdarstellung (DE-588)4199376-7 gnd rswk-swf Hopf-Verzweigung (DE-588)4160648-6 s Frequenzbereichsdarstellung (DE-588)4199376-7 s 1\p DE-604 Chen, G. Sonstige oth Erscheint auch als Druck-Ausgabe 9789810226282 Erscheint auch als Druck-Ausgabe 9810226284 http://www.worldscientific.com/worldscibooks/10.1142/3070#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Moiola, Jorge L. Hopf bifurcation analysis a frequency domain approach Bifurcation theory Differential equations, Nonlinear / Numerical solutions Hopf-Verzweigung (DE-588)4160648-6 gnd Frequenzbereichsdarstellung (DE-588)4199376-7 gnd |
subject_GND | (DE-588)4160648-6 (DE-588)4199376-7 |
title | Hopf bifurcation analysis a frequency domain approach |
title_auth | Hopf bifurcation analysis a frequency domain approach |
title_exact_search | Hopf bifurcation analysis a frequency domain approach |
title_full | Hopf bifurcation analysis a frequency domain approach Jorge L. Moiola, Guanrong Chen |
title_fullStr | Hopf bifurcation analysis a frequency domain approach Jorge L. Moiola, Guanrong Chen |
title_full_unstemmed | Hopf bifurcation analysis a frequency domain approach Jorge L. Moiola, Guanrong Chen |
title_short | Hopf bifurcation analysis |
title_sort | hopf bifurcation analysis a frequency domain approach |
title_sub | a frequency domain approach |
topic | Bifurcation theory Differential equations, Nonlinear / Numerical solutions Hopf-Verzweigung (DE-588)4160648-6 gnd Frequenzbereichsdarstellung (DE-588)4199376-7 gnd |
topic_facet | Bifurcation theory Differential equations, Nonlinear / Numerical solutions Hopf-Verzweigung Frequenzbereichsdarstellung |
url | http://www.worldscientific.com/worldscibooks/10.1142/3070#t=toc |
work_keys_str_mv | AT moiolajorgel hopfbifurcationanalysisafrequencydomainapproach AT cheng hopfbifurcationanalysisafrequencydomainapproach |