Transformation methods for nonlinear partial differential equations:
The purpose of the book is to provide research workers in applied mathematics, physics, and engineering with practical geometric methods for solving systems of nonlinear partial differential equations. The first two chapters provide an introduction to the more or less classical results of Lie dealin...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1992
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | The purpose of the book is to provide research workers in applied mathematics, physics, and engineering with practical geometric methods for solving systems of nonlinear partial differential equations. The first two chapters provide an introduction to the more or less classical results of Lie dealing with symmetries and similarity solutions. The results, however, are presented in the context of contact manifolds rather than the usual jet bundle formulation and provide a number of new conclusions. The remaining three chapters present essentially new methods of solution that are based on recent publications of the authors'. The text contains numerous fully worked examples so that the reader can fully appreciate the power and scope of the new methods. In effect, the problem of solving systems of nonlinear partial differential equations is reduced to the problem of solving families of autonomous ordinary differential equations. This allows the graphs of solutions of the system of partial differential equations to be realized as certain leaves of a foliation of an appropriately defined contact manifold. In fact, it is often possible to obtain families of solutions whose graphs foliate an open subset of the contact manifold. These ideas are extended in the final chapter by developing the theory of transformations that map a foliation of a contact manifold onto a foliation. This analysis gives rise to results of surprising depth and practical significance. In particular, an extended Hamilton-Jacobi method for solving systems of partial differential equations is obtained |
Beschreibung: | xii, 325 p. ill |
ISBN: | 9789812797124 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044635846 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1992 |||| o||u| ||||||eng d | ||
020 | |a 9789812797124 |c electronic bk. |9 978-981-279-712-4 | ||
024 | 7 | |a 10.1142/1629 |2 doi | |
035 | |a (ZDB-124-WOP)00005325 | ||
035 | |a (OCoLC)1012651569 | ||
035 | |a (DE-599)BVBBV044635846 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.353 |2 22 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Edelen, Dominic G. B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transformation methods for nonlinear partial differential equations |c Dominic G.B. Edelen & Jian-hua Wang |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1992 | |
300 | |a xii, 325 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The purpose of the book is to provide research workers in applied mathematics, physics, and engineering with practical geometric methods for solving systems of nonlinear partial differential equations. The first two chapters provide an introduction to the more or less classical results of Lie dealing with symmetries and similarity solutions. The results, however, are presented in the context of contact manifolds rather than the usual jet bundle formulation and provide a number of new conclusions. The remaining three chapters present essentially new methods of solution that are based on recent publications of the authors'. The text contains numerous fully worked examples so that the reader can fully appreciate the power and scope of the new methods. In effect, the problem of solving systems of nonlinear partial differential equations is reduced to the problem of solving families of autonomous ordinary differential equations. This allows the graphs of solutions of the system of partial differential equations to be realized as certain leaves of a foliation of an appropriately defined contact manifold. In fact, it is often possible to obtain families of solutions whose graphs foliate an open subset of the contact manifold. These ideas are extended in the final chapter by developing the theory of transformations that map a foliation of a contact manifold onto a foliation. This analysis gives rise to results of surprising depth and practical significance. In particular, an extended Hamilton-Jacobi method for solving systems of partial differential equations is obtained | ||
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Transformations (Mathematics) | |
650 | 0 | 7 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transformation |g Mathematik |0 (DE-588)4060637-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |D s |
689 | 0 | 1 | |a Transformation |g Mathematik |0 (DE-588)4060637-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wang, Jian-hua |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810209339 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/1629#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033817 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/1629#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178049408696320 |
---|---|
any_adam_object | |
author | Edelen, Dominic G. B. |
author_facet | Edelen, Dominic G. B. |
author_role | aut |
author_sort | Edelen, Dominic G. B. |
author_variant | d g b e dgb dgbe |
building | Verbundindex |
bvnumber | BV044635846 |
classification_rvk | SK 540 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005325 (OCoLC)1012651569 (DE-599)BVBBV044635846 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03479nmm a2200469zc 4500</leader><controlfield tag="001">BV044635846</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812797124</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-279-712-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/1629</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012651569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635846</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edelen, Dominic G. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transformation methods for nonlinear partial differential equations</subfield><subfield code="c">Dominic G.B. Edelen & Jian-hua Wang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 325 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of the book is to provide research workers in applied mathematics, physics, and engineering with practical geometric methods for solving systems of nonlinear partial differential equations. The first two chapters provide an introduction to the more or less classical results of Lie dealing with symmetries and similarity solutions. The results, however, are presented in the context of contact manifolds rather than the usual jet bundle formulation and provide a number of new conclusions. The remaining three chapters present essentially new methods of solution that are based on recent publications of the authors'. The text contains numerous fully worked examples so that the reader can fully appreciate the power and scope of the new methods. In effect, the problem of solving systems of nonlinear partial differential equations is reduced to the problem of solving families of autonomous ordinary differential equations. This allows the graphs of solutions of the system of partial differential equations to be realized as certain leaves of a foliation of an appropriately defined contact manifold. In fact, it is often possible to obtain families of solutions whose graphs foliate an open subset of the contact manifold. These ideas are extended in the final chapter by developing the theory of transformations that map a foliation of a contact manifold onto a foliation. This analysis gives rise to results of surprising depth and practical significance. In particular, an extended Hamilton-Jacobi method for solving systems of partial differential equations is obtained</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformations (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transformation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4060637-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Transformation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4060637-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jian-hua</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810209339</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/1629#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033817</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/1629#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635846 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:47Z |
institution | BVB |
isbn | 9789812797124 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033817 |
oclc_num | 1012651569 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xii, 325 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Edelen, Dominic G. B. Verfasser aut Transformation methods for nonlinear partial differential equations Dominic G.B. Edelen & Jian-hua Wang Singapore World Scientific Pub. Co. c1992 xii, 325 p. ill txt rdacontent c rdamedia cr rdacarrier The purpose of the book is to provide research workers in applied mathematics, physics, and engineering with practical geometric methods for solving systems of nonlinear partial differential equations. The first two chapters provide an introduction to the more or less classical results of Lie dealing with symmetries and similarity solutions. The results, however, are presented in the context of contact manifolds rather than the usual jet bundle formulation and provide a number of new conclusions. The remaining three chapters present essentially new methods of solution that are based on recent publications of the authors'. The text contains numerous fully worked examples so that the reader can fully appreciate the power and scope of the new methods. In effect, the problem of solving systems of nonlinear partial differential equations is reduced to the problem of solving families of autonomous ordinary differential equations. This allows the graphs of solutions of the system of partial differential equations to be realized as certain leaves of a foliation of an appropriately defined contact manifold. In fact, it is often possible to obtain families of solutions whose graphs foliate an open subset of the contact manifold. These ideas are extended in the final chapter by developing the theory of transformations that map a foliation of a contact manifold onto a foliation. This analysis gives rise to results of surprising depth and practical significance. In particular, an extended Hamilton-Jacobi method for solving systems of partial differential equations is obtained Differential equations, Partial Transformations (Mathematics) Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd rswk-swf Transformation Mathematik (DE-588)4060637-5 gnd rswk-swf Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 s Transformation Mathematik (DE-588)4060637-5 s 1\p DE-604 Wang, Jian-hua Sonstige oth Erscheint auch als Druck-Ausgabe 9810209339 http://www.worldscientific.com/worldscibooks/10.1142/1629#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Edelen, Dominic G. B. Transformation methods for nonlinear partial differential equations Differential equations, Partial Transformations (Mathematics) Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Transformation Mathematik (DE-588)4060637-5 gnd |
subject_GND | (DE-588)4128900-6 (DE-588)4060637-5 |
title | Transformation methods for nonlinear partial differential equations |
title_auth | Transformation methods for nonlinear partial differential equations |
title_exact_search | Transformation methods for nonlinear partial differential equations |
title_full | Transformation methods for nonlinear partial differential equations Dominic G.B. Edelen & Jian-hua Wang |
title_fullStr | Transformation methods for nonlinear partial differential equations Dominic G.B. Edelen & Jian-hua Wang |
title_full_unstemmed | Transformation methods for nonlinear partial differential equations Dominic G.B. Edelen & Jian-hua Wang |
title_short | Transformation methods for nonlinear partial differential equations |
title_sort | transformation methods for nonlinear partial differential equations |
topic | Differential equations, Partial Transformations (Mathematics) Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Transformation Mathematik (DE-588)4060637-5 gnd |
topic_facet | Differential equations, Partial Transformations (Mathematics) Nichtlineare partielle Differentialgleichung Transformation Mathematik |
url | http://www.worldscientific.com/worldscibooks/10.1142/1629#t=toc |
work_keys_str_mv | AT edelendominicgb transformationmethodsfornonlinearpartialdifferentialequations AT wangjianhua transformationmethodsfornonlinearpartialdifferentialequations |