Quasi-conservative systems: cycles, resonances and chaos
"This monograph presents the theory of nonconservative systems close to nonlinear integrable ones. With the example of concrete quasi-conservative systems close to nonintegrable ones, the results of numerical analysis are given, and the problem of applying the small parameter method is analyzed...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1998
|
Schriftenreihe: | World Scientific series on nonlinear science, Series A
vol. 30 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | "This monograph presents the theory of nonconservative systems close to nonlinear integrable ones. With the example of concrete quasi-conservative systems close to nonintegrable ones, the results of numerical analysis are given, and the problem of applying the small parameter method is analyzed.The fundamantal part of the book deals with the investigation of the perturbable systems. Both autonomous and nonautonomous (periodic in time) systems are considered. The global analysis of systems close to the two-dimensional Hamiltonian ones takes a central place in the text. This global analysis includes the solution to problems such as the limit cycles, resonances, and nonregular dynamics. For the autonomous systems, one should note the analysis of the standard (Duffing and pendulum) equations including the solution to the "weakened" 16 Hilbert's problem, and for the nonautonomous systems one should note the mathematical foundations of the theory of synchronization of oscillations (the existence of new regimes, and the passage of invariant tori across the resonance zones under the change of detuning). The presentation is accompanied by examples." |
Beschreibung: | xii, 325 p. ill. (some col.) |
ISBN: | 9789812796318 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044635778 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1998 |||| o||u| ||||||eng d | ||
020 | |a 9789812796318 |9 978-981-279-631-8 | ||
024 | 7 | |a 10.1142/3238 |2 doi | |
035 | |a (ZDB-124-WOP)00004542 | ||
035 | |a (OCoLC)1012634760 | ||
035 | |a (DE-599)BVBBV044635778 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 530.1/55252 |2 22 | |
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
100 | 1 | |a Morozov, A. D. |d 1944- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quasi-conservative systems |b cycles, resonances and chaos |c Albert D. Morozov |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1998 | |
300 | |a xii, 325 p. |b ill. (some col.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Scientific series on nonlinear science, Series A |v vol. 30 | |
520 | |a "This monograph presents the theory of nonconservative systems close to nonlinear integrable ones. With the example of concrete quasi-conservative systems close to nonintegrable ones, the results of numerical analysis are given, and the problem of applying the small parameter method is analyzed.The fundamantal part of the book deals with the investigation of the perturbable systems. Both autonomous and nonautonomous (periodic in time) systems are considered. The global analysis of systems close to the two-dimensional Hamiltonian ones takes a central place in the text. This global analysis includes the solution to problems such as the limit cycles, resonances, and nonregular dynamics. For the autonomous systems, one should note the analysis of the standard (Duffing and pendulum) equations including the solution to the "weakened" 16 Hilbert's problem, and for the nonautonomous systems one should note the mathematical foundations of the theory of synchronization of oscillations (the existence of new regimes, and the passage of invariant tori across the resonance zones under the change of detuning). The presentation is accompanied by examples." | ||
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Differential equations, Nonlinear | |
650 | 4 | |a Perturbation (Mathematics) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810228101 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810228104 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/3238#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033749 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3238#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178049266089984 |
---|---|
any_adam_object | |
author | Morozov, A. D. 1944- |
author_facet | Morozov, A. D. 1944- |
author_role | aut |
author_sort | Morozov, A. D. 1944- |
author_variant | a d m ad adm |
building | Verbundindex |
bvnumber | BV044635778 |
classification_rvk | UK 1200 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004542 (OCoLC)1012634760 (DE-599)BVBBV044635778 |
dewey-full | 530.1/55252 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/55252 |
dewey-search | 530.1/55252 |
dewey-sort | 3530.1 555252 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02745nmm a2200433zcb4500</leader><controlfield tag="001">BV044635778</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812796318</subfield><subfield code="9">978-981-279-631-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3238</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012634760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635778</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/55252</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morozov, A. D.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-conservative systems</subfield><subfield code="b">cycles, resonances and chaos</subfield><subfield code="c">Albert D. Morozov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 325 p.</subfield><subfield code="b">ill. (some col.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series on nonlinear science, Series A</subfield><subfield code="v">vol. 30</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This monograph presents the theory of nonconservative systems close to nonlinear integrable ones. With the example of concrete quasi-conservative systems close to nonintegrable ones, the results of numerical analysis are given, and the problem of applying the small parameter method is analyzed.The fundamantal part of the book deals with the investigation of the perturbable systems. Both autonomous and nonautonomous (periodic in time) systems are considered. The global analysis of systems close to the two-dimensional Hamiltonian ones takes a central place in the text. This global analysis includes the solution to problems such as the limit cycles, resonances, and nonregular dynamics. For the autonomous systems, one should note the analysis of the standard (Duffing and pendulum) equations including the solution to the "weakened" 16 Hilbert's problem, and for the nonautonomous systems one should note the mathematical foundations of the theory of synchronization of oscillations (the existence of new regimes, and the passage of invariant tori across the resonance zones under the change of detuning). The presentation is accompanied by examples."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation (Mathematics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810228101</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810228104</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3238#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033749</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3238#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635778 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:57:47Z |
institution | BVB |
isbn | 9789812796318 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033749 |
oclc_num | 1012634760 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xii, 325 p. ill. (some col.) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | World Scientific series on nonlinear science, Series A |
spelling | Morozov, A. D. 1944- Verfasser aut Quasi-conservative systems cycles, resonances and chaos Albert D. Morozov Singapore World Scientific Pub. Co. c1998 xii, 325 p. ill. (some col.) txt rdacontent c rdamedia cr rdacarrier World Scientific series on nonlinear science, Series A vol. 30 "This monograph presents the theory of nonconservative systems close to nonlinear integrable ones. With the example of concrete quasi-conservative systems close to nonintegrable ones, the results of numerical analysis are given, and the problem of applying the small parameter method is analyzed.The fundamantal part of the book deals with the investigation of the perturbable systems. Both autonomous and nonautonomous (periodic in time) systems are considered. The global analysis of systems close to the two-dimensional Hamiltonian ones takes a central place in the text. This global analysis includes the solution to problems such as the limit cycles, resonances, and nonregular dynamics. For the autonomous systems, one should note the analysis of the standard (Duffing and pendulum) equations including the solution to the "weakened" 16 Hilbert's problem, and for the nonautonomous systems one should note the mathematical foundations of the theory of synchronization of oscillations (the existence of new regimes, and the passage of invariant tori across the resonance zones under the change of detuning). The presentation is accompanied by examples." Nonlinear theories Dynamics Differential equations, Nonlinear Perturbation (Mathematics) Erscheint auch als Druck-Ausgabe 9789810228101 Erscheint auch als Druck-Ausgabe 9810228104 http://www.worldscientific.com/worldscibooks/10.1142/3238#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Morozov, A. D. 1944- Quasi-conservative systems cycles, resonances and chaos Nonlinear theories Dynamics Differential equations, Nonlinear Perturbation (Mathematics) |
title | Quasi-conservative systems cycles, resonances and chaos |
title_auth | Quasi-conservative systems cycles, resonances and chaos |
title_exact_search | Quasi-conservative systems cycles, resonances and chaos |
title_full | Quasi-conservative systems cycles, resonances and chaos Albert D. Morozov |
title_fullStr | Quasi-conservative systems cycles, resonances and chaos Albert D. Morozov |
title_full_unstemmed | Quasi-conservative systems cycles, resonances and chaos Albert D. Morozov |
title_short | Quasi-conservative systems |
title_sort | quasi conservative systems cycles resonances and chaos |
title_sub | cycles, resonances and chaos |
topic | Nonlinear theories Dynamics Differential equations, Nonlinear Perturbation (Mathematics) |
topic_facet | Nonlinear theories Dynamics Differential equations, Nonlinear Perturbation (Mathematics) |
url | http://www.worldscientific.com/worldscibooks/10.1142/3238#t=toc |
work_keys_str_mv | AT morozovad quasiconservativesystemscyclesresonancesandchaos |