Completely positive matrices:

A real matrix is positive semidefinite if it can be decomposed as A=BB[symbol]. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BB[symbol] is known as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Berman, Abraham (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c2003
Schlagworte:
Online-Zugang:FHN01
Volltext
Zusammenfassung:A real matrix is positive semidefinite if it can be decomposed as A=BB[symbol]. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BB[symbol] is known as the cp-rank of A. This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp-rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined
Beschreibung:x, 206 p. ill
ISBN:9789812795212

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen