Real operator algebras:
The theory of operator algebras is generally considered over the field of complex numbers and in the complex Hilbert spaces. So it is a natural and interesting problem: how is the theory in the field of real numbers? Up to now, the theory of operator algebras over the field of real numbers has seeme...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2003
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | The theory of operator algebras is generally considered over the field of complex numbers and in the complex Hilbert spaces. So it is a natural and interesting problem: how is the theory in the field of real numbers? Up to now, the theory of operator algebras over the field of real numbers has seemed not to be introduced systematically and sufficiently. The aim of this book is to set up the fundamentals of real operator algebras and to give a systematic discussion for real operator algebras. Since the treatment is from the beginning (real Banach and Hilbert spaces, real Banach algebras, real Banach *algebras, real C*-algebras and W*-algebras, etc.), and some basic facts are given, one can get some results on real operator algebras easily. The book is also an introduction to real operator algebras, written in a self-contained manner. The reader needs just a general knowledge of Banach algebras and operator algebras |
Beschreibung: | xiii, 241 p |
ISBN: | 9789812795182 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044635677 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2003 |||| o||u| ||||||eng d | ||
020 | |a 9789812795182 |c electronic bk. |9 978-981-279-518-2 | ||
024 | 7 | |a 10.1142/5284 |2 doi | |
035 | |a (ZDB-124-WOP)00003761 | ||
035 | |a (OCoLC)1012713051 | ||
035 | |a (DE-599)BVBBV044635677 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 512.55 |2 22 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Li, Bingren |d 1941- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Real operator algebras |c Bingren Li |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2003 | |
300 | |a xiii, 241 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The theory of operator algebras is generally considered over the field of complex numbers and in the complex Hilbert spaces. So it is a natural and interesting problem: how is the theory in the field of real numbers? Up to now, the theory of operator algebras over the field of real numbers has seemed not to be introduced systematically and sufficiently. The aim of this book is to set up the fundamentals of real operator algebras and to give a systematic discussion for real operator algebras. Since the treatment is from the beginning (real Banach and Hilbert spaces, real Banach algebras, real Banach *algebras, real C*-algebras and W*-algebras, etc.), and some basic facts are given, one can get some results on real operator algebras easily. The book is also an introduction to real operator algebras, written in a self-contained manner. The reader needs just a general knowledge of Banach algebras and operator algebras | ||
650 | 4 | |a Banach algebras | |
650 | 4 | |a Operator algebras | |
650 | 0 | 7 | |a Operatoralgebra |0 (DE-588)4129366-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Operatoralgebra |0 (DE-588)4129366-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789812383808 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9812383808 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/5284#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033649 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/5284#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178049049034752 |
---|---|
any_adam_object | |
author | Li, Bingren 1941- |
author_facet | Li, Bingren 1941- |
author_role | aut |
author_sort | Li, Bingren 1941- |
author_variant | b l bl |
building | Verbundindex |
bvnumber | BV044635677 |
classification_rvk | SK 600 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003761 (OCoLC)1012713051 (DE-599)BVBBV044635677 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02529nmm a2200445zc 4500</leader><controlfield tag="001">BV044635677</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812795182</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-279-518-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/5284</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003761</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012713051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Bingren</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real operator algebras</subfield><subfield code="c">Bingren Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 241 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of operator algebras is generally considered over the field of complex numbers and in the complex Hilbert spaces. So it is a natural and interesting problem: how is the theory in the field of real numbers? Up to now, the theory of operator algebras over the field of real numbers has seemed not to be introduced systematically and sufficiently. The aim of this book is to set up the fundamentals of real operator algebras and to give a systematic discussion for real operator algebras. Since the treatment is from the beginning (real Banach and Hilbert spaces, real Banach algebras, real Banach *algebras, real C*-algebras and W*-algebras, etc.), and some basic facts are given, one can get some results on real operator algebras easily. The book is also an introduction to real operator algebras, written in a self-contained manner. The reader needs just a general knowledge of Banach algebras and operator algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatoralgebra</subfield><subfield code="0">(DE-588)4129366-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operatoralgebra</subfield><subfield code="0">(DE-588)4129366-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812383808</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812383808</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5284#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033649</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5284#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635677 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:47Z |
institution | BVB |
isbn | 9789812795182 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033649 |
oclc_num | 1012713051 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiii, 241 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Li, Bingren 1941- Verfasser aut Real operator algebras Bingren Li Singapore World Scientific Pub. Co. c2003 xiii, 241 p txt rdacontent c rdamedia cr rdacarrier The theory of operator algebras is generally considered over the field of complex numbers and in the complex Hilbert spaces. So it is a natural and interesting problem: how is the theory in the field of real numbers? Up to now, the theory of operator algebras over the field of real numbers has seemed not to be introduced systematically and sufficiently. The aim of this book is to set up the fundamentals of real operator algebras and to give a systematic discussion for real operator algebras. Since the treatment is from the beginning (real Banach and Hilbert spaces, real Banach algebras, real Banach *algebras, real C*-algebras and W*-algebras, etc.), and some basic facts are given, one can get some results on real operator algebras easily. The book is also an introduction to real operator algebras, written in a self-contained manner. The reader needs just a general knowledge of Banach algebras and operator algebras Banach algebras Operator algebras Operatoralgebra (DE-588)4129366-6 gnd rswk-swf Operatoralgebra (DE-588)4129366-6 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789812383808 Erscheint auch als Druck-Ausgabe 9812383808 http://www.worldscientific.com/worldscibooks/10.1142/5284#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Li, Bingren 1941- Real operator algebras Banach algebras Operator algebras Operatoralgebra (DE-588)4129366-6 gnd |
subject_GND | (DE-588)4129366-6 |
title | Real operator algebras |
title_auth | Real operator algebras |
title_exact_search | Real operator algebras |
title_full | Real operator algebras Bingren Li |
title_fullStr | Real operator algebras Bingren Li |
title_full_unstemmed | Real operator algebras Bingren Li |
title_short | Real operator algebras |
title_sort | real operator algebras |
topic | Banach algebras Operator algebras Operatoralgebra (DE-588)4129366-6 gnd |
topic_facet | Banach algebras Operator algebras Operatoralgebra |
url | http://www.worldscientific.com/worldscibooks/10.1142/5284#t=toc |
work_keys_str_mv | AT libingren realoperatoralgebras |