Stability of stationary sets in control systems with discontinuous nonlinearities:
This book presents a development of the frequency-domain approach to the stability study of stationary sets of systems with discontinuous nonlinearities. The treatment is based on the theory of differential inclusions and the second Lyapunov method. Various versions of the Kalman-Yakubovich lemma on...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2004
|
Schriftenreihe: | Series on stability, vibration, and control of systems. Series A
v.14 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book presents a development of the frequency-domain approach to the stability study of stationary sets of systems with discontinuous nonlinearities. The treatment is based on the theory of differential inclusions and the second Lyapunov method. Various versions of the Kalman-Yakubovich lemma on solvability of matrix inequalities are presented and discussed in detail. It is shown how the tools developed can be applied to stability investigations of relay control systems, gyroscopic systems, mechanical systems with a Coulomb friction, nonlinear electrical circuits, cellular neural networks, phase-locked loops, and synchronous machines |
Beschreibung: | xv, 334 p. ill |
ISBN: | 9789812794239 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044635606 | ||
003 | DE-604 | ||
005 | 20220715 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2004 |||| o||u| ||||||eng d | ||
020 | |a 9789812794239 |c electronic bk. |9 978-981-279-423-9 | ||
024 | 7 | |a 10.1142/5442 |2 doi | |
035 | |a (ZDB-124-WOP)00003354 | ||
035 | |a (OCoLC)1012656342 | ||
035 | |a (DE-599)BVBBV044635606 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 629.836 |2 22 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a I͡Akubovich, V. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stability of stationary sets in control systems with discontinuous nonlinearities |c .A. Yakubovich, G.A. Leonov, A. Kh. Gelig |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2004 | |
300 | |a xv, 334 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series on stability, vibration, and control of systems. Series A |v v.14 | |
520 | |a This book presents a development of the frequency-domain approach to the stability study of stationary sets of systems with discontinuous nonlinearities. The treatment is based on the theory of differential inclusions and the second Lyapunov method. Various versions of the Kalman-Yakubovich lemma on solvability of matrix inequalities are presented and discussed in detail. It is shown how the tools developed can be applied to stability investigations of relay control systems, gyroscopic systems, mechanical systems with a Coulomb friction, nonlinear electrical circuits, cellular neural networks, phase-locked loops, and synchronous machines | ||
650 | 4 | |a Control theory | |
650 | 4 | |a Nonlinear control theory | |
650 | 4 | |a Set theory | |
650 | 4 | |a System analysis | |
650 | 4 | |a Differential equations, Nonlinear | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Engineering systems | |
650 | 0 | 7 | |a Nichtlineare Kontrolltheorie |0 (DE-588)4475218-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Kontrolltheorie |0 (DE-588)4475218-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Leonov, G. A. |e Sonstige |4 oth | |
700 | 1 | |a Gelig, Arkadiĭ Khaĭmovich |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789812387196 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9812387196 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/5442#t=toc |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033578 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/5442#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178048900136960 |
---|---|
any_adam_object | |
author | I͡Akubovich, V. A. |
author_facet | I͡Akubovich, V. A. |
author_role | aut |
author_sort | I͡Akubovich, V. A. |
author_variant | v a i va vai |
building | Verbundindex |
bvnumber | BV044635606 |
classification_rvk | SK 540 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003354 (OCoLC)1012656342 (DE-599)BVBBV044635606 |
dewey-full | 629.836 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.836 |
dewey-search | 629.836 |
dewey-sort | 3629.836 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02751nmm a2200541zcb4500</leader><controlfield tag="001">BV044635606</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220715 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812794239</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-279-423-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/5442</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003354</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012656342</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635606</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.836</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">I͡Akubovich, V. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability of stationary sets in control systems with discontinuous nonlinearities</subfield><subfield code="c">.A. Yakubovich, G.A. Leonov, A. Kh. Gelig</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 334 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series on stability, vibration, and control of systems. Series A</subfield><subfield code="v">v.14</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a development of the frequency-domain approach to the stability study of stationary sets of systems with discontinuous nonlinearities. The treatment is based on the theory of differential inclusions and the second Lyapunov method. Various versions of the Kalman-Yakubovich lemma on solvability of matrix inequalities are presented and discussed in detail. It is shown how the tools developed can be applied to stability investigations of relay control systems, gyroscopic systems, mechanical systems with a Coulomb friction, nonlinear electrical circuits, cellular neural networks, phase-locked loops, and synchronous machines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Kontrolltheorie</subfield><subfield code="0">(DE-588)4475218-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Kontrolltheorie</subfield><subfield code="0">(DE-588)4475218-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leonov, G. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gelig, Arkadiĭ Khaĭmovich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812387196</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812387196</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5442#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033578</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5442#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635606 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:47Z |
institution | BVB |
isbn | 9789812794239 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033578 |
oclc_num | 1012656342 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xv, 334 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Series on stability, vibration, and control of systems. Series A |
spelling | I͡Akubovich, V. A. Verfasser aut Stability of stationary sets in control systems with discontinuous nonlinearities .A. Yakubovich, G.A. Leonov, A. Kh. Gelig Singapore World Scientific Pub. Co. c2004 xv, 334 p. ill txt rdacontent c rdamedia cr rdacarrier Series on stability, vibration, and control of systems. Series A v.14 This book presents a development of the frequency-domain approach to the stability study of stationary sets of systems with discontinuous nonlinearities. The treatment is based on the theory of differential inclusions and the second Lyapunov method. Various versions of the Kalman-Yakubovich lemma on solvability of matrix inequalities are presented and discussed in detail. It is shown how the tools developed can be applied to stability investigations of relay control systems, gyroscopic systems, mechanical systems with a Coulomb friction, nonlinear electrical circuits, cellular neural networks, phase-locked loops, and synchronous machines Control theory Nonlinear control theory Set theory System analysis Differential equations, Nonlinear Engineering mathematics Engineering systems Nichtlineare Kontrolltheorie (DE-588)4475218-0 gnd rswk-swf Nichtlineare Kontrolltheorie (DE-588)4475218-0 s 1\p DE-604 Leonov, G. A. Sonstige oth Gelig, Arkadiĭ Khaĭmovich Sonstige oth Erscheint auch als Druck-Ausgabe 9789812387196 Erscheint auch als Druck-Ausgabe 9812387196 http://www.worldscientific.com/worldscibooks/10.1142/5442#t=toc Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | I͡Akubovich, V. A. Stability of stationary sets in control systems with discontinuous nonlinearities Control theory Nonlinear control theory Set theory System analysis Differential equations, Nonlinear Engineering mathematics Engineering systems Nichtlineare Kontrolltheorie (DE-588)4475218-0 gnd |
subject_GND | (DE-588)4475218-0 |
title | Stability of stationary sets in control systems with discontinuous nonlinearities |
title_auth | Stability of stationary sets in control systems with discontinuous nonlinearities |
title_exact_search | Stability of stationary sets in control systems with discontinuous nonlinearities |
title_full | Stability of stationary sets in control systems with discontinuous nonlinearities .A. Yakubovich, G.A. Leonov, A. Kh. Gelig |
title_fullStr | Stability of stationary sets in control systems with discontinuous nonlinearities .A. Yakubovich, G.A. Leonov, A. Kh. Gelig |
title_full_unstemmed | Stability of stationary sets in control systems with discontinuous nonlinearities .A. Yakubovich, G.A. Leonov, A. Kh. Gelig |
title_short | Stability of stationary sets in control systems with discontinuous nonlinearities |
title_sort | stability of stationary sets in control systems with discontinuous nonlinearities |
topic | Control theory Nonlinear control theory Set theory System analysis Differential equations, Nonlinear Engineering mathematics Engineering systems Nichtlineare Kontrolltheorie (DE-588)4475218-0 gnd |
topic_facet | Control theory Nonlinear control theory Set theory System analysis Differential equations, Nonlinear Engineering mathematics Engineering systems Nichtlineare Kontrolltheorie |
url | http://www.worldscientific.com/worldscibooks/10.1142/5442#t=toc |
work_keys_str_mv | AT iakubovichva stabilityofstationarysetsincontrolsystemswithdiscontinuousnonlinearities AT leonovga stabilityofstationarysetsincontrolsystemswithdiscontinuousnonlinearities AT geligarkadiikhaimovich stabilityofstationarysetsincontrolsystemswithdiscontinuousnonlinearities |