Convex analysis in general vector spaces:
The primary aim of this book is to present the conjugate and subdifferential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex function...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore
World Scientific
[2002]
|
Schlagworte: | |
Online-Zugang: | FHN01 TUM01 UBM01 Volltext |
Zusammenfassung: | The primary aim of this book is to present the conjugate and subdifferential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions. |
Beschreibung: | 1 Online-Ressource (xx, 367 Seiten) |
ISBN: | 9789812777096 9789814488150 |
DOI: | 10.1142/5021 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044635127 | ||
003 | DE-604 | ||
005 | 20220228 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2002 |||| o||u| ||||||eng d | ||
020 | |a 9789812777096 |9 978-981-277-709-6 | ||
020 | |a 9789814488150 |9 978-981-4488-15-0 | ||
024 | 7 | |a 10.1142/5021 |2 doi | |
035 | |a (ZDB-124-WOP)00003814 | ||
035 | |a (OCoLC)881299016 | ||
035 | |a (DE-599)BVBBV044635127 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-91 |a DE-19 | ||
082 | 0 | |a 515.8 |2 22 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a MAT 159 |2 stub | ||
100 | 1 | |a Zălinescu, Constantin |d 1952- |e Verfasser |0 (DE-588)1146393032 |4 aut | |
245 | 1 | 0 | |a Convex analysis in general vector spaces |c C. Zălinescu |
264 | 1 | |a New Jersey ; London ; Singapore |b World Scientific |c [2002] | |
264 | 4 | |c © 2002 | |
300 | |a 1 Online-Ressource (xx, 367 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The primary aim of this book is to present the conjugate and subdifferential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions. | ||
650 | 4 | |a Convex functions | |
650 | 4 | |a Convex sets | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Vector spaces | |
650 | 0 | 7 | |a Konvexe Analysis |0 (DE-588)4138566-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorraum |0 (DE-588)4130622-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vektorraum |0 (DE-588)4130622-3 |D s |
689 | 0 | 1 | |a Konvexe Analysis |0 (DE-588)4138566-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-238-067-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9812380671 |
856 | 4 | 0 | |u https://doi.org/10.1142/5021 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033099 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/5021#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/5021 |l TUM01 |p ZDB-124-WOP |q TUM_PDA_WOP_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/5021 |l UBM01 |p ZDB-124-WOP |q UBM_PDA_WOP_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178047746703360 |
---|---|
any_adam_object | |
author | Zălinescu, Constantin 1952- |
author_GND | (DE-588)1146393032 |
author_facet | Zălinescu, Constantin 1952- |
author_role | aut |
author_sort | Zălinescu, Constantin 1952- |
author_variant | c z cz |
building | Verbundindex |
bvnumber | BV044635127 |
classification_rvk | SK 350 SK 600 SK 890 |
classification_tum | MAT 159 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003814 (OCoLC)881299016 (DE-599)BVBBV044635127 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1142/5021 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02923nmm a2200577zc 4500</leader><controlfield tag="001">BV044635127</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220228 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812777096</subfield><subfield code="9">978-981-277-709-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814488150</subfield><subfield code="9">978-981-4488-15-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/5021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881299016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635127</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 159</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zălinescu, Constantin</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1146393032</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex analysis in general vector spaces</subfield><subfield code="c">C. Zălinescu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2002]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 367 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The primary aim of this book is to present the conjugate and subdifferential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-238-067-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812380671</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/5021</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033099</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5021#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/5021</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/5021</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">UBM_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635127 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:46Z |
institution | BVB |
isbn | 9789812777096 9789814488150 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033099 |
oclc_num | 881299016 |
open_access_boolean | |
owner | DE-92 DE-91 DE-BY-TUM DE-19 DE-BY-UBM |
owner_facet | DE-92 DE-91 DE-BY-TUM DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (xx, 367 Seiten) |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP ZDB-124-WOP TUM_PDA_WOP_Kauf ZDB-124-WOP UBM_PDA_WOP_Kauf |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific |
record_format | marc |
spelling | Zălinescu, Constantin 1952- Verfasser (DE-588)1146393032 aut Convex analysis in general vector spaces C. Zălinescu New Jersey ; London ; Singapore World Scientific [2002] © 2002 1 Online-Ressource (xx, 367 Seiten) txt rdacontent c rdamedia cr rdacarrier The primary aim of this book is to present the conjugate and subdifferential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions. Convex functions Convex sets Functional analysis Vector spaces Konvexe Analysis (DE-588)4138566-4 gnd rswk-swf Vektorraum (DE-588)4130622-3 gnd rswk-swf Vektorraum (DE-588)4130622-3 s Konvexe Analysis (DE-588)4138566-4 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-981-238-067-8 Erscheint auch als Druck-Ausgabe 9812380671 https://doi.org/10.1142/5021 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zălinescu, Constantin 1952- Convex analysis in general vector spaces Convex functions Convex sets Functional analysis Vector spaces Konvexe Analysis (DE-588)4138566-4 gnd Vektorraum (DE-588)4130622-3 gnd |
subject_GND | (DE-588)4138566-4 (DE-588)4130622-3 |
title | Convex analysis in general vector spaces |
title_auth | Convex analysis in general vector spaces |
title_exact_search | Convex analysis in general vector spaces |
title_full | Convex analysis in general vector spaces C. Zălinescu |
title_fullStr | Convex analysis in general vector spaces C. Zălinescu |
title_full_unstemmed | Convex analysis in general vector spaces C. Zălinescu |
title_short | Convex analysis in general vector spaces |
title_sort | convex analysis in general vector spaces |
topic | Convex functions Convex sets Functional analysis Vector spaces Konvexe Analysis (DE-588)4138566-4 gnd Vektorraum (DE-588)4130622-3 gnd |
topic_facet | Convex functions Convex sets Functional analysis Vector spaces Konvexe Analysis Vektorraum |
url | https://doi.org/10.1142/5021 |
work_keys_str_mv | AT zalinescuconstantin convexanalysisingeneralvectorspaces |