Ultrametric Banach algebras:
In this book, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebras, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2003
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | In this book, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebras, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras. In uniform Banach algebras, the spectral norm is equal to the supremum of all continuous multiplicative seminorms whose kernel is a maximal ideal. Two different such seminorms can have the same kernel. Krasner-Tate algebras are characterized among Krasner algebras, affinoid algebras, and ultrametric Banach algebras. Given a Krasner-Tate algbebra A=K{t}[x], the absolute values extending the Gauss norm from K{t} to A are defined by the elements of the Shilov boundary of A. |
Beschreibung: | xiii, 275 p |
ISBN: | 9789812775603 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044635018 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2003 |||| o||u| ||||||eng d | ||
020 | |a 9789812775603 |c electronic bk. |9 978-981-277-560-3 | ||
024 | 7 | |a 10.1142/5128 |2 doi | |
035 | |a (ZDB-124-WOP)00003639 | ||
035 | |a (OCoLC)881299118 | ||
035 | |a (DE-599)BVBBV044635018 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 512.554 |2 22 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Escassut, Alain |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ultrametric Banach algebras |c Alain Escassut |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2003 | |
300 | |a xiii, 275 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a In this book, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebras, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras. In uniform Banach algebras, the spectral norm is equal to the supremum of all continuous multiplicative seminorms whose kernel is a maximal ideal. Two different such seminorms can have the same kernel. Krasner-Tate algebras are characterized among Krasner algebras, affinoid algebras, and ultrametric Banach algebras. Given a Krasner-Tate algbebra A=K{t}[x], the absolute values extending the Gauss norm from K{t} to A are defined by the elements of the Shilov boundary of A. | ||
650 | 4 | |a Banach algebras | |
650 | 0 | 7 | |a p-adische Zahl |0 (DE-588)4044292-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Algebra |0 (DE-588)4193187-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Algebra |0 (DE-588)4193187-7 |D s |
689 | 0 | 1 | |a p-adische Zahl |0 (DE-588)4044292-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789812381941 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9812381945 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/5128#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030032990 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/5128#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178047435276288 |
---|---|
any_adam_object | |
author | Escassut, Alain |
author_facet | Escassut, Alain |
author_role | aut |
author_sort | Escassut, Alain |
author_variant | a e ae |
building | Verbundindex |
bvnumber | BV044635018 |
classification_rvk | SK 600 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003639 (OCoLC)881299118 (DE-599)BVBBV044635018 |
dewey-full | 512.554 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.554 |
dewey-search | 512.554 |
dewey-sort | 3512.554 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02466nmm a2200457zc 4500</leader><controlfield tag="001">BV044635018</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812775603</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-560-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/5128</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881299118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635018</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.554</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Escassut, Alain</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ultrametric Banach algebras</subfield><subfield code="c">Alain Escassut</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 275 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this book, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebras, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras. In uniform Banach algebras, the spectral norm is equal to the supremum of all continuous multiplicative seminorms whose kernel is a maximal ideal. Two different such seminorms can have the same kernel. Krasner-Tate algebras are characterized among Krasner algebras, affinoid algebras, and ultrametric Banach algebras. Given a Krasner-Tate algbebra A=K{t}[x], the absolute values extending the Gauss norm from K{t} to A are defined by the elements of the Shilov boundary of A.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-adische Zahl</subfield><subfield code="0">(DE-588)4044292-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">p-adische Zahl</subfield><subfield code="0">(DE-588)4044292-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812381941</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812381945</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5128#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030032990</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5128#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635018 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:46Z |
institution | BVB |
isbn | 9789812775603 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030032990 |
oclc_num | 881299118 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiii, 275 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Escassut, Alain Verfasser aut Ultrametric Banach algebras Alain Escassut Singapore World Scientific Pub. Co. c2003 xiii, 275 p txt rdacontent c rdamedia cr rdacarrier In this book, ultrametric Banach algebras are studied with the help of topological considerations, properties from affinoid algebras, and circular filters which characterize absolute values on polynomials and make a nice tree structure. The Shilov boundary does exist for normed ultrametric algebras. In uniform Banach algebras, the spectral norm is equal to the supremum of all continuous multiplicative seminorms whose kernel is a maximal ideal. Two different such seminorms can have the same kernel. Krasner-Tate algebras are characterized among Krasner algebras, affinoid algebras, and ultrametric Banach algebras. Given a Krasner-Tate algbebra A=K{t}[x], the absolute values extending the Gauss norm from K{t} to A are defined by the elements of the Shilov boundary of A. Banach algebras p-adische Zahl (DE-588)4044292-5 gnd rswk-swf Banach-Algebra (DE-588)4193187-7 gnd rswk-swf Banach-Algebra (DE-588)4193187-7 s p-adische Zahl (DE-588)4044292-5 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789812381941 Erscheint auch als Druck-Ausgabe 9812381945 http://www.worldscientific.com/worldscibooks/10.1142/5128#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Escassut, Alain Ultrametric Banach algebras Banach algebras p-adische Zahl (DE-588)4044292-5 gnd Banach-Algebra (DE-588)4193187-7 gnd |
subject_GND | (DE-588)4044292-5 (DE-588)4193187-7 |
title | Ultrametric Banach algebras |
title_auth | Ultrametric Banach algebras |
title_exact_search | Ultrametric Banach algebras |
title_full | Ultrametric Banach algebras Alain Escassut |
title_fullStr | Ultrametric Banach algebras Alain Escassut |
title_full_unstemmed | Ultrametric Banach algebras Alain Escassut |
title_short | Ultrametric Banach algebras |
title_sort | ultrametric banach algebras |
topic | Banach algebras p-adische Zahl (DE-588)4044292-5 gnd Banach-Algebra (DE-588)4193187-7 gnd |
topic_facet | Banach algebras p-adische Zahl Banach-Algebra |
url | http://www.worldscientific.com/worldscibooks/10.1142/5128#t=toc |
work_keys_str_mv | AT escassutalain ultrametricbanachalgebras |