Invariant algebras and geometric reasoning:
The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2008
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of Grassmann-Cayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide |
Beschreibung: | xiv, 518 p. ill |
ISBN: | 9812770119 9789812770110 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044634632 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2008 |||| o||u| ||||||eng d | ||
020 | |a 9812770119 |c electronic bk. |9 981-277-011-9 | ||
020 | |a 9789812770110 |c electronic bk. |9 978-981-277-011-0 | ||
024 | 7 | |a 10.1142/6514 |2 doi | |
035 | |a (ZDB-124-WOP)00001829 | ||
035 | |a (OCoLC)1012713242 | ||
035 | |a (DE-599)BVBBV044634632 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 512.57 |2 22 | |
100 | 1 | |a Li, Hongbo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Invariant algebras and geometric reasoning |c Hongbo, Li |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2008 | |
300 | |a xiv, 518 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of Grassmann-Cayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide | ||
650 | 4 | |a Clifford algebras | |
650 | 4 | |a Invariants | |
650 | 4 | |a Symmetry (Mathematics) | |
650 | 0 | 7 | |a Geometrische Algebra |0 (DE-588)4156707-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Clifford-Algebra |0 (DE-588)4199958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Invariantentheorie |0 (DE-588)4156712-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Projektive Geometrie |0 (DE-588)4047436-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Algebra |0 (DE-588)4156707-9 |D s |
689 | 0 | 1 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 0 | 2 | |a Projektive Geometrie |0 (DE-588)4047436-7 |D s |
689 | 0 | 3 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |D s |
689 | 0 | 4 | |a Geometrische Invariantentheorie |0 (DE-588)4156712-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/6514#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030032603 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/6514#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178046583832576 |
---|---|
any_adam_object | |
author | Li, Hongbo |
author_facet | Li, Hongbo |
author_role | aut |
author_sort | Li, Hongbo |
author_variant | h l hl |
building | Verbundindex |
bvnumber | BV044634632 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00001829 (OCoLC)1012713242 (DE-599)BVBBV044634632 |
dewey-full | 512.57 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.57 |
dewey-search | 512.57 |
dewey-sort | 3512.57 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03110nmm a2200529zc 4500</leader><controlfield tag="001">BV044634632</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812770119</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-011-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812770110</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-011-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/6514</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00001829 </subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012713242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044634632</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.57</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Hongbo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant algebras and geometric reasoning</subfield><subfield code="c">Hongbo, Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 518 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of Grassmann-Cayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clifford algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Invariantentheorie</subfield><subfield code="0">(DE-588)4156712-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Geometrische Invariantentheorie</subfield><subfield code="0">(DE-588)4156712-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6514#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030032603</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/6514#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044634632 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:45Z |
institution | BVB |
isbn | 9812770119 9789812770110 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030032603 |
oclc_num | 1012713242 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 518 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Li, Hongbo Verfasser aut Invariant algebras and geometric reasoning Hongbo, Li Singapore World Scientific Pub. Co. c2008 xiv, 518 p. ill txt rdacontent c rdamedia cr rdacarrier The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of Grassmann-Cayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide Clifford algebras Invariants Symmetry (Mathematics) Geometrische Algebra (DE-588)4156707-9 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 gnd rswk-swf Euklidische Geometrie (DE-588)4137555-5 gnd rswk-swf Geometrische Invariantentheorie (DE-588)4156712-2 gnd rswk-swf Projektive Geometrie (DE-588)4047436-7 gnd rswk-swf Geometrische Algebra (DE-588)4156707-9 s Clifford-Algebra (DE-588)4199958-7 s Projektive Geometrie (DE-588)4047436-7 s Euklidische Geometrie (DE-588)4137555-5 s Geometrische Invariantentheorie (DE-588)4156712-2 s 1\p DE-604 http://www.worldscientific.com/worldscibooks/10.1142/6514#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Li, Hongbo Invariant algebras and geometric reasoning Clifford algebras Invariants Symmetry (Mathematics) Geometrische Algebra (DE-588)4156707-9 gnd Clifford-Algebra (DE-588)4199958-7 gnd Euklidische Geometrie (DE-588)4137555-5 gnd Geometrische Invariantentheorie (DE-588)4156712-2 gnd Projektive Geometrie (DE-588)4047436-7 gnd |
subject_GND | (DE-588)4156707-9 (DE-588)4199958-7 (DE-588)4137555-5 (DE-588)4156712-2 (DE-588)4047436-7 |
title | Invariant algebras and geometric reasoning |
title_auth | Invariant algebras and geometric reasoning |
title_exact_search | Invariant algebras and geometric reasoning |
title_full | Invariant algebras and geometric reasoning Hongbo, Li |
title_fullStr | Invariant algebras and geometric reasoning Hongbo, Li |
title_full_unstemmed | Invariant algebras and geometric reasoning Hongbo, Li |
title_short | Invariant algebras and geometric reasoning |
title_sort | invariant algebras and geometric reasoning |
topic | Clifford algebras Invariants Symmetry (Mathematics) Geometrische Algebra (DE-588)4156707-9 gnd Clifford-Algebra (DE-588)4199958-7 gnd Euklidische Geometrie (DE-588)4137555-5 gnd Geometrische Invariantentheorie (DE-588)4156712-2 gnd Projektive Geometrie (DE-588)4047436-7 gnd |
topic_facet | Clifford algebras Invariants Symmetry (Mathematics) Geometrische Algebra Clifford-Algebra Euklidische Geometrie Geometrische Invariantentheorie Projektive Geometrie |
url | http://www.worldscientific.com/worldscibooks/10.1142/6514#t=toc |
work_keys_str_mv | AT lihongbo invariantalgebrasandgeometricreasoning |