The golden ratio and Fibonacci numbers:
In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
[1997]
|
Schlagworte: | |
Online-Zugang: | FHN01 UBM01 Volltext |
Zusammenfassung: | In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate projections. The structural properties of aperiodic crystals and the growth of certain biological organisms are described in terms of Fibonacci sequences |
Beschreibung: | 1 Online-Ressource (vii, 162 S.) Illustrationen |
ISBN: | 9789812386304 |
DOI: | 10.1142/3595 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044633895 | ||
003 | DE-604 | ||
005 | 20210419 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789812386304 |c Online |9 978-981-238-630-4 | ||
024 | 7 | |a 10.1142/3595 |2 doi | |
035 | |a (ZDB-124-WOP)00004980 | ||
035 | |a (OCoLC)1012628959 | ||
035 | |a (DE-599)BVBBV044633895 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-19 | ||
082 | 0 | |a 512/.72 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Dunlap, Richard A. |d 1952- |e Verfasser |0 (DE-588)128527811 |4 aut | |
245 | 1 | 0 | |a The golden ratio and Fibonacci numbers |c by Richard A. Dunlap |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c [1997] | |
264 | 4 | |c © 1997 | |
300 | |a 1 Online-Ressource (vii, 162 S.) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate projections. The structural properties of aperiodic crystals and the growth of certain biological organisms are described in terms of Fibonacci sequences | ||
650 | 4 | |a Golden section | |
650 | 4 | |a Fibonacci numbers | |
650 | 0 | 7 | |a Goldener Schnitt |0 (DE-588)4021529-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fibonacci-Folge |0 (DE-588)4249138-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schnitt |g Mathematik |0 (DE-588)4458889-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schnitt |g Mathematik |0 (DE-588)4458889-6 |D s |
689 | 0 | 1 | |a Goldener Schnitt |0 (DE-588)4021529-5 |D s |
689 | 0 | 2 | |a Fibonacci-Folge |0 (DE-588)4249138-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810232641 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810232640 |
856 | 4 | 0 | |u https://doi.org/10.1142/3595 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030031867 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/3595#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1142/3595 |l UBM01 |p ZDB-124-WOP |q UBM_PDA_WOP_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178044920791040 |
---|---|
any_adam_object | |
author | Dunlap, Richard A. 1952- |
author_GND | (DE-588)128527811 |
author_facet | Dunlap, Richard A. 1952- |
author_role | aut |
author_sort | Dunlap, Richard A. 1952- |
author_variant | r a d ra rad |
building | Verbundindex |
bvnumber | BV044633895 |
classification_rvk | SK 180 SK 380 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004980 (OCoLC)1012628959 (DE-599)BVBBV044633895 |
dewey-full | 512/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.72 |
dewey-search | 512/.72 |
dewey-sort | 3512 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1142/3595 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02833nmm a2200529zc 4500</leader><controlfield tag="001">BV044633895</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210419 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812386304</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-238-630-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3595</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012628959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044633895</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunlap, Richard A.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128527811</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The golden ratio and Fibonacci numbers</subfield><subfield code="c">by Richard A. Dunlap</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">[1997]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 162 S.)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate projections. The structural properties of aperiodic crystals and the growth of certain biological organisms are described in terms of Fibonacci sequences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Golden section</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fibonacci numbers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Goldener Schnitt</subfield><subfield code="0">(DE-588)4021529-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fibonacci-Folge</subfield><subfield code="0">(DE-588)4249138-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schnitt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4458889-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schnitt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4458889-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Goldener Schnitt</subfield><subfield code="0">(DE-588)4021529-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fibonacci-Folge</subfield><subfield code="0">(DE-588)4249138-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810232641</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810232640</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/3595</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030031867</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3595#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/3595</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">UBM_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044633895 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:43Z |
institution | BVB |
isbn | 9789812386304 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030031867 |
oclc_num | 1012628959 |
open_access_boolean | |
owner | DE-92 DE-19 DE-BY-UBM |
owner_facet | DE-92 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (vii, 162 S.) Illustrationen |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP ZDB-124-WOP UBM_PDA_WOP_Kauf |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Dunlap, Richard A. 1952- Verfasser (DE-588)128527811 aut The golden ratio and Fibonacci numbers by Richard A. Dunlap Singapore World Scientific Pub. Co. [1997] © 1997 1 Online-Ressource (vii, 162 S.) Illustrationen txt rdacontent c rdamedia cr rdacarrier In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate projections. The structural properties of aperiodic crystals and the growth of certain biological organisms are described in terms of Fibonacci sequences Golden section Fibonacci numbers Goldener Schnitt (DE-588)4021529-5 gnd rswk-swf Fibonacci-Folge (DE-588)4249138-1 gnd rswk-swf Schnitt Mathematik (DE-588)4458889-6 gnd rswk-swf Schnitt Mathematik (DE-588)4458889-6 s Goldener Schnitt (DE-588)4021529-5 s Fibonacci-Folge (DE-588)4249138-1 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810232641 Erscheint auch als Druck-Ausgabe 9810232640 https://doi.org/10.1142/3595 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dunlap, Richard A. 1952- The golden ratio and Fibonacci numbers Golden section Fibonacci numbers Goldener Schnitt (DE-588)4021529-5 gnd Fibonacci-Folge (DE-588)4249138-1 gnd Schnitt Mathematik (DE-588)4458889-6 gnd |
subject_GND | (DE-588)4021529-5 (DE-588)4249138-1 (DE-588)4458889-6 |
title | The golden ratio and Fibonacci numbers |
title_auth | The golden ratio and Fibonacci numbers |
title_exact_search | The golden ratio and Fibonacci numbers |
title_full | The golden ratio and Fibonacci numbers by Richard A. Dunlap |
title_fullStr | The golden ratio and Fibonacci numbers by Richard A. Dunlap |
title_full_unstemmed | The golden ratio and Fibonacci numbers by Richard A. Dunlap |
title_short | The golden ratio and Fibonacci numbers |
title_sort | the golden ratio and fibonacci numbers |
topic | Golden section Fibonacci numbers Goldener Schnitt (DE-588)4021529-5 gnd Fibonacci-Folge (DE-588)4249138-1 gnd Schnitt Mathematik (DE-588)4458889-6 gnd |
topic_facet | Golden section Fibonacci numbers Goldener Schnitt Fibonacci-Folge Schnitt Mathematik |
url | https://doi.org/10.1142/3595 |
work_keys_str_mv | AT dunlapricharda thegoldenratioandfibonaccinumbers |